Advertisement

Validation and Over-Parameterization—Experiences from Hydrological Modeling

  • Jan SeibertEmail author
  • Maria Staudinger
  • H. J. (Ilja) van Meerveld
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Models that simulate environmental processes by quantifying fluxes and states vary largely in their complexity and number of parameters. Most models suffer from over-parameterization, meaning that the available information does not allow identification of all model parameters. Over-parameterization is a serious problem in environmental modeling, as it might imply that a model works well, but could do so for the wrong reasons. This can lead to unreliable results when the model is used to make predictions. Model testing, or model validation, is therefore crucial. Usually, in more complex models more, internal variables are explicitly simulated, and, thus, there are more opportunities for model testing against observations than is the case for simple models. Increasing model complexity, however, comes at the cost of more parameters, and therefore the risk for over-parameterization increases as well. In this chapter, we discuss different ways to validate models, which simulate hydrological processes at the catchment scale, and the balance between model testability and over-parameterization.

Keywords

Model validation Catchment modeling Model complexity Parameter identification 

Supplementary material

References

  1. Ambroise, B., Perrin, J. L., & Reutenauer, D. (1995). Multicriterion validation of a semidistributed conceptual model of the water cycle in the Fecht Catchment (Vosges Massif, France). Water Resources Research, 31(6), 1467–1481.  https://doi.org/10.1029/94WR03293.CrossRefGoogle Scholar
  2. Andreadis, K. M., & Lettenmaier, D. P. (2006). Assimilating remotely sensed snow observations into a macroscale hydrology model. Advances in Water Resources, 29(6), 872–886.  https://doi.org/10.1016/j.advwatres.2005.08.004.CrossRefGoogle Scholar
  3. Barnes, C. J., & Bonell, M. (1996). Application of the Unit hydrograph techniques to solute transport in catchments. Hydrological Processes, 10(6), 793–802.  https://doi.org/10.1002/(SICI)1099-1085(199606)10:6%3c793:AID-HYP372%3e3.0.CO;2-K.CrossRefGoogle Scholar
  4. Bathurst, J., Ewen, J, Parkin, G, O’Connell, P., & Cooper, J. (2004). Validation of catchment models for predicting land-use and climate change impacts. 3. Blind validation for internal and outlet responses. Journal of Hydrology, 287(1–4), 74–94.  https://doi.org/10.1016/j.jhydrol.2003.09.021.CrossRefGoogle Scholar
  5. Beven, K. (1983). Surface water hydrology—runoff generation and basin structure. Reviews of Geophysics and Space Physics, 21(3), 721–730.  https://doi.org/10.1029/RG021i003p00721.CrossRefGoogle Scholar
  6. Beven, K. (1989). Changing ideas in hydrology—the case of physically-based models. Journal of Hydrology, 105(1–2), 157–172.  https://doi.org/10.1016/0022-1694(89)90101-7.CrossRefGoogle Scholar
  7. Beven, K. (1993). Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 16, 41–51.CrossRefGoogle Scholar
  8. Beven, K. (2006). A manifesto for the equifinality thesis. Journal of Hydrology, 320, 18–36.  https://doi.org/10.1016/j.jhydrol.2005.07.007.CrossRefGoogle Scholar
  9. Beven, K. (2012). Rainfall-runoff modelling: The primer (2nd Ed.).CrossRefGoogle Scholar
  10. Beven, K., & Germann, P. (1982). Macropores and water flow in soils. Water Resources Research, 18(5), 1311–1325.  https://doi.org/10.1029/WR018i005p01311.CrossRefGoogle Scholar
  11. Beven, K. J. (2000). Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences, 4(2), 203–213.  https://doi.org/10.5194/hess-4-203-2000.CrossRefGoogle Scholar
  12. Birkel, C., & Soulsby, C. (2015). Advancing tracer-aided rainfall-runoff modelling: A review of progress, problems and unrealised potential. Hydrological Processes, 29(25), 5227–5240.  https://doi.org/10.1002/hyp.10594.CrossRefGoogle Scholar
  13. Birkel, C., Soulsby, C., & Tetzlaff, D. (2011). Modelling catchment-scale water storage dynamics: Reconciling dynamic storage with tracer-inferred passive storage. Hydrological Processes, 25(25), 3924–3936.  https://doi.org/10.1002/hyp.8201.CrossRefGoogle Scholar
  14. Bixio, A., et al. (2002). Modeling groundwater-surface water interactions including effects of morphogenetic depressions in the Chernobyl exclusion zone. Environmental Geology, 42(2–3), 162–177.  https://doi.org/10.1007/s00254-001-0486-7.CrossRefGoogle Scholar
  15. Blazkova, S., Beven, K., Tacheci, P., & Kulasova, A. (2002). Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model calibration): The death of TOPMODEL? Water Resources Research, 38(11), 39-1–39–11.  https://doi.org/10.1029/2001wr000912.CrossRefGoogle Scholar
  16. Brooks, E. S., Boll, J., & McDaniel, P. A. (2004). A hillslope-scale experiment to measure lateral saturated hydraulic conductivity. Water Resources Research, 40(W04208), 1–10.  https://doi.org/10.1029/2003WR002858.CrossRefGoogle Scholar
  17. Brunner, P., & Simmons, C. T. (2012). Hydrogeosphere: A fully integrated, physically based hydrological model. Ground Water, 50(2), 170–176.  https://doi.org/10.1111/j.1745-6584.2011.00882.x.CrossRefGoogle Scholar
  18. Bühler, Y., et al. (2015). Snow depth mapping in high-alpine catchments using digital photogrammetry. Cryosphere, 9(1), 229–243.  https://doi.org/10.5194/tc-9-229-2015.CrossRefGoogle Scholar
  19. Camporese, M., Paniconi, C., Putti, M., & Orlandini, S. (2010). Surface-subsurface flow modeling with path-based runoff routing, boundary condition-based coupling, and assimilation of multisource observation data. Water Resources Research, 46(2).  https://doi.org/10.1029/2008wr007536.
  20. Clark, M. P., et al. (2017). The evolution of process-based hydrologic models: Historical challenges and the collective quest for physical realism. Hydrology and Earth System Sciences, 21(7), 3427–3440.  https://doi.org/10.5194/hess-21-3427-2017.CrossRefGoogle Scholar
  21. Clark, M. P., Schaefli, B., Schymanski, S. J., Samaniego, L., Luce, C. H., Jackson, B. M., et al. (2016). Improving the theoretical underpinnings of process-based hydrologic models. Water Resources Research, 52(3), 2350–2365.  https://doi.org/10.1002/2015WR017910.CrossRefGoogle Scholar
  22. Coron, L., Andréassian, V., Perrin, C., Lerat, J., Vaze, J., Bourqui, M., et al. (2012). Crash testing hydrological models in contrasted climate conditions: An experiment on 216 Australian catchments. Water Resources Research, 48(5), 1–17.  https://doi.org/10.1029/2011WR011721.CrossRefGoogle Scholar
  23. Dakhlaoui, H., Ruelland, D., Tramblay, Y., & Bargaoui, Z. (2017). Evaluating the robustness of conceptual rainfall-runoff models under climate variability in Northern Tunisia. Journal of Hydrology, 550, 201–217.  https://doi.org/10.1016/j.jhydrol.2017.04.032.CrossRefGoogle Scholar
  24. Davies, J., Beven, K., Nyberg, L., & Rodhe, A. (2011). A discrete particle representation of hillslope hydrology: Hypothesis testing in reproducing a tracer experiment at Gårdsjön, Sweden. Hydrological Processes, 25(23), 3602–3612.  https://doi.org/10.1002/hyp.8085.CrossRefGoogle Scholar
  25. Detty, J. M., & McGuire, K. J. (2010). Topographic controls on shallow groundwater dynamics: Implications of hydrologic connectivity between hillslopes and riparian zones in a till mantled catchment. Hydrological Processes, 24(16), 2222–2236.  https://doi.org/10.1002/hyp.7656.CrossRefGoogle Scholar
  26. Dong, J., Walker, J. P., Houser, P. R., & Sun, C. (2007). Scanning multichannel microwave radiometer snow water equivalent assimilation. Journal of Geophysical Research, 112(D7), D07108.  https://doi.org/10.1029/2006JD007209.CrossRefGoogle Scholar
  27. Dunn, S. M., Bacon, J. R., Soulsby, C., Tetzlaff, D., Stutter, M. I., Waldron, S., et al. (2008a). Interpretation of homogeneity in d18O signatures of stream water in a nested sub-catchment system in North-East Scotland. Hydrological Processes, 22, 4767–4782.CrossRefGoogle Scholar
  28. Dunn, S. M., Freer, J., Weiler, M., Kirkby, M. J., Seibert, J., Quinn, P. F., et al. (2008b). Conceptualization in catchment modelling: Simply learning? Hydrological Processes, 22(13), 2389–2393.  https://doi.org/10.1002/hyp.7070.CrossRefGoogle Scholar
  29. Dunne, T. (1983). Relation of field studies and modeling in the prediction of storm runoff. Journal of Hydrology, 65(1–3), 25–48.  https://doi.org/10.1016/0022-1694(83)90209-3.CrossRefGoogle Scholar
  30. Durand, M., & Margulis, S. A. (2006). Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent. Journal of Hydrometeorology, 7(3), 443–457.  https://doi.org/10.1175/JHM502.1.CrossRefGoogle Scholar
  31. Ebel, B. A., & Loague, K. (2006). Physics-based hydrologic-response simulation: Seeing through the fog of equifinality. Hydrological Processes, 20(13), 2887–2900.  https://doi.org/10.1002/hyp.6388.CrossRefGoogle Scholar
  32. Ebel, B. A., Loague, K., Vanderkwaak, J. E., Dietrich, W. E., Montgomery, D. R., Torres, R., et al. (2007). Near-surface hydrologic response for a steep, unchanneled catchment near Coos Bay, Oregon: 2. Physics-based simulations. American Journal of Science, 307(4), 709–748.  https://doi.org/10.2475/04.2007.03.CrossRefGoogle Scholar
  33. Euser, T., Winsemius, H. C., Hrachowitz, M., Fenicia, F., Uhlenbrook, S., & Savenije, H. H. G. (2013). A framework to assess the realism of model structures using hydrological signatures. Hydrology and Earth System Sciences, 17(5), 1893–1912.  https://doi.org/10.5194/hess-17-1893-2013.CrossRefGoogle Scholar
  34. Fenicia, F., McDonnell, J. J., & Savenije, H. H. G. (2008). Learning from model improvement: On the contribution of complementary data to process understanding. Water Resources Research, 44 (December 2007), 1–13.  https://doi.org/10.1029/2007wr006386.
  35. Finger, D., Vis, M. J. P., Huss, M., & Seibert, J. (2015). The value of multiple data set calibration versus model complexity for improving the performance of hydrological models in mountain catchments. Water Resources Research, 51(1), 1939–1958.  https://doi.org/10.1002/2014WR016259.CrossRefGoogle Scholar
  36. Glaser, B., Klaus, J., Frei, S., Frentress, J., Pfister, L., & Hopp, L. (2016). On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum. Water Resources Research, 52(10), 8317–8342.  https://doi.org/10.1002/2015WR018414.CrossRefGoogle Scholar
  37. Grabs, T., Seibert, J., Bishop, K., & Laudon, H. (2009). Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. Journal of Hydrology, 373(1–2), 15–23.  https://doi.org/10.1016/j.jhydrol.2009.03.031.CrossRefGoogle Scholar
  38. Grayson, R. B., & Blöschl, G. (eds.) (2001). Spatial patterns in catchment hydrology: Observations and modelling. CUP Archive.Google Scholar
  39. Grayson, R. B., Moore, I. D., & McMahon, T. A. (1992). Physically based hydrologic modeling 2. Is the concept realistic. Water Resources Research, 26(10), 2659–2666.Google Scholar
  40. Griessinger, N., Seibert, J., Magnusson, J., & Jonas, T. (2016). Assessing the benefit of snow data assimilation for runoff modeling in Alpine catchments. Hydrology and Earth System Sciences, 20(9), 3895–3905.  https://doi.org/10.5194/hess-20-3895-2016.CrossRefGoogle Scholar
  41. de Grosbois, E., Hooper, R. P., & Christophersen, N. (1988). A multisignal automatic calibration methodology for hydrochemical models: A case study of the Birkenes Model. Water Resources Research, 24(8), 1299–1307.  https://doi.org/10.1029/WR024i008p01299.CrossRefGoogle Scholar
  42. Gupta, H. V., Kling, H., Yilmaz, K. K., & Martinez, G. F. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1–2), 80–91.  https://doi.org/10.1016/j.jhydrol.2009.08.003.CrossRefGoogle Scholar
  43. Gupta, H. V., Wagener, T., & Liu, Y. (2008). Reconciling theory with observations: Elements of a diagnostic approach to model evaluation. Hydrological Processes, 22, 3802–3813.  https://doi.org/10.1002/hyp.6989.CrossRefGoogle Scholar
  44. Hansen, A. L., Refsgaard, J. C., Christensen, B. S. B., & Jensen, K. H. (2013). Importance of including small-scale tile drain discharge in the calibration of a coupled groundwater-surface water catchment model. Water Resources Research, 49(1), 585–603.  https://doi.org/10.1029/2011WR011783.CrossRefGoogle Scholar
  45. Hartmann, A., Goldscheider, N., Wagener, T., Lange, J., & Weiler, M. (2014). Karst water resources in a changing world: Review of hydrological modeling approaches. Reviews of Geophysics, 52(3), 218–242.  https://doi.org/10.1002/2013RG000443.CrossRefGoogle Scholar
  46. Hartmann, A., et al. (2013). Process-based karst modelling to relate hydrodynamic and hydrochemical characteristics to system properties. Hydrology and Earth System Sciences, 17(8), 3305–3321.  https://doi.org/10.5194/hess-17-3305-2013.CrossRefGoogle Scholar
  47. Haught, D. R. W., & van Meerveld, H. J. (2011). Spatial variation in transient water table responses: Differences between an upper and lower hillslope zone. Hydrological Processes, 25(25), 3866–3877.  https://doi.org/10.1002/hyp.8354.CrossRefGoogle Scholar
  48. Hourdin, F, et al. (2016). The art and science of climate model tuning. Bulletin of the American Meteorological Society (MARCH): BAMS-D-15-00135.1.  https://doi.org/10.1175/bams-d-15-00135.1.CrossRefGoogle Scholar
  49. Hrachowitz, M., Savenije, H., Bogaard, T. A., Tetzlaff, D., & Soulsby, C. (2013). What can flux tracking teach us about water age distribution patterns and their temporal dynamics? Hydrology and Earth System Sciences, 17(2), 533–564.  https://doi.org/10.5194/hess-17-533-2013.CrossRefGoogle Scholar
  50. Iorgulescu, I., Beven, K. J., & Musy, A. (2005). Data-based modelling of runoff and chemical tracer concentrations in the Haute-Mentue research catchment (Switzerland). Hydrological Processes, 19(13), 2557–2573.  https://doi.org/10.1002/hyp.5731.CrossRefGoogle Scholar
  51. Ivanov, V. Y., Vivoni, E. R., Bras, R. L., & Entekhabi, D. (2004). Catchment hydrologic response with a fully distributed triangulated irregular network model. Water Resources Research, 40(11).  https://doi.org/10.1029/2004wr003218.
  52. James, L. D., & Burges, S. J. (1982). Selection, calibration, and testing of hydrologic models, Hydrologic Modeling of Small Watersheds (C Haan, H Johnson, and D Brakensiek, eds). American Society of Agricultural Engineers: St. Joseph, Mich.Google Scholar
  53. Jones, J. P., Sudicky, E. A., Brookfield, A. E., & Park, Y. -J. (2006). An assessment of the tracer-based approach to quantifying groundwater contributions to streamflow. Water Resources Research, 42(2).  https://doi.org/10.1029/2005wr004130.
  54. Jones, J. P., Sudicky, E. A., & McLaren, R. G. (2008). Application of a fully-integrated surface-subsurface flow model at the watershed-scale: A case study. Water Resources Research, 44(3).  https://doi.org/10.1029/2006wr005603.
  55. Kachanoski, R. G., De Jong, E., & Van, Wesenbeeck I. J. (1990). Field scale patterns of soil water storage from non-contacting measurements of bulk electrical conductivity. Canadian Journal of Soil Science, 70(3), 537–542.  https://doi.org/10.4141/cjss90-056.CrossRefGoogle Scholar
  56. Karlsen, R. H., Seibert, J., Grabs, T., Laudon, H., Blomkvist, P., & Bishop, K. (2016). The assumption of uniform specific discharge: Unsafe at any time? Hydrological Processes, 30(21), 3978–3988.  https://doi.org/10.1002/hyp.10877.CrossRefGoogle Scholar
  57. Kikuchi, C. (2017). Toward increased use of data worth analyses in groundwater studies. Groundwater, 55(5), 670–673.  https://doi.org/10.1111/gwat.12562.CrossRefGoogle Scholar
  58. Kirchner, J. W. (2006a). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42(3), 1–5.  https://doi.org/10.1029/2005WR004362.CrossRefGoogle Scholar
  59. Kirchner, J. W. (2006b). Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology. Water Resources Research, 42(3), W03S04  https://doi.org/10.1029/2005wr004362.
  60. Kirchner, J. W., & Neal, C. (2013). Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend detection. Proceedings of the National Academy of Sciences, 110(30), 12213–12218.  https://doi.org/10.1073/pnas.1304328110.CrossRefGoogle Scholar
  61. Klemeš, V. (1983). Conceptualization and scale in hydology. Journal of Hydrology, 65, 1–23.CrossRefGoogle Scholar
  62. Klemeš, V. (1986a). Operational testing of hydrological simulation models. Hydrological Sciences Journal, 31(1), 13–24.  https://doi.org/10.1080/02626668609491024.CrossRefGoogle Scholar
  63. Klemeš, V. (1986b). Dilettantism in hydrology: Transition or destiny? Water Resources Research, 22(9 S), 177S–188S.  https://doi.org/10.1029/wr022i09sp0177s.CrossRefGoogle Scholar
  64. Klemeš, V. (1997). Guest editorial: Of carts and horses in hydrologic modeling. Journal of Hydrologic Engineering, 2(2), 43–49.  https://doi.org/10.1061/(ASCE)1084-0699(1997)2:2(43).CrossRefGoogle Scholar
  65. Koboltschnig, G. R., Schöner, W., Zappa, M., Kroisleitner, C., & Holzmann, H. (2008). Runoff modelling of the glacierized Alpine Upper Salzach Basin (Austria): Multi-criteria result validation. Hydrological Processes, 22(19), 3950–3964.  https://doi.org/10.1002/hyp.7112.CrossRefGoogle Scholar
  66. Krause, P., & Boyle, D. P. (2005). Advances in geosciences comparison of different efficiency criteria for hydrological model assessment. Advances In Geosciences, 5(89), 89–97.  https://doi.org/10.5194/adgeo-5-89-2005.CrossRefGoogle Scholar
  67. Kuczera, G., & Mroczkowski, M. (1998). Assessment of hydrologic parameter uncertainty and the worth of multiresponse data. Water Resources Research, 34(6), 1481–1489.  https://doi.org/10.1029/98WR00496.CrossRefGoogle Scholar
  68. Laudan, L. (1990). Demystifying underdetermination. In C. W. Savage (Ed.), Scientific theories. Minnesota studies in the philosophy of science (pp. 267–297). Minneapolis: University of Minnesota Press.  https://doi.org/10.1080/03634528709378635.
  69. Leaf, A. T. (2017). Using models to identify the best data: An example from Northern Wisconsin. Groundwater, 55(5), 641–645.  https://doi.org/10.1111/gwat.12561.CrossRefGoogle Scholar
  70. Liang, X., Lettenmaier, D. P., Wood, E. F., & Burges, S. J. (1994). A simple hydrologically based model of land surface water and energy fluxes for general circulation models. Journal of Geophysical Research, 99(D7), 14415.  https://doi.org/10.1029/94JD00483.CrossRefGoogle Scholar
  71. Lindström, G. (1997). A simple automatic calibration routine for the HBV model. Nordic Hydrology, 28(3), 153–168.MathSciNetCrossRefGoogle Scholar
  72. Loague, K., & Ebel, B. A. (2016). Finite-element modelling of physics-based hillslope hydrology, Keith Beven, and beyond. Hydrological Processes, 30(14), 2432–2437.  https://doi.org/10.1002/hyp.10762.CrossRefGoogle Scholar
  73. Loague, K., & VanderKwaak, J. E. (2002). Simulating hydrological response for the R-5 catchment: Comparison of two models and the impact of the roads. Hydrological Processes, 16(5), 1015–1032.  https://doi.org/10.1002/hyp.316.CrossRefGoogle Scholar
  74. Loague, K., & VanderKwaak, J. E. (2004a). Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool. Hydrological Processes, 18(15), 2949–2956.  https://doi.org/10.1002/hyp.5737.CrossRefGoogle Scholar
  75. Loague, K., & VanderKwaak, J. E. (2004b). Physics-based hydrologic response simulation: Platinum bridge, 1958 Edsel, or useful tool. Hydrological Processes, 18(15), 2949–2956.  https://doi.org/10.1002/hyp.5737.CrossRefGoogle Scholar
  76. Magnusson, J., Gustafsson, D., Hüsler, F., & Jonas, T. (2014). Assimilation of point SWE data into a distributed snow cover model comparing two contrasting methods. Water Resources Research, 50(10), 7816–7835.  https://doi.org/10.1002/2014WR015302.CrossRefGoogle Scholar
  77. Magnusson, J., Wever, N., Essery, R., Helbig, N., Winstral, A., & Jonas, T. (2015). Evaluating snow models with varying process representations for hydrological applications. Water Resources Research, 51(4), 2707–2723.  https://doi.org/10.1002/2014WR016498.CrossRefGoogle Scholar
  78. Martinez-Landa, L., & Carrera, J. (2005). An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resources Research, 41(3), 1–13.  https://doi.org/10.1029/2004WR003458.CrossRefGoogle Scholar
  79. McGuire, K. J., Weiler, M., & McDonnell, J. J. (2007). Integrating tracer experiments with modeling to assess runoff processes and water transit times. Advances in Water Resources, 30(4), 824–837.  https://doi.org/10.1016/j.advwatres.2006.07.004.CrossRefGoogle Scholar
  80. McMillan, H., Krueger, T., & Freer, J. (2012). Benchmarking observational uncertainties for hydrology: Rainfall, river discharge and water quality. Hydrological Processes, 26(26), 4078–4111.  https://doi.org/10.1002/hyp.9384.CrossRefGoogle Scholar
  81. Milzow, C., Krogh, P. E., & Bauer-Gottwein, P. (2011). Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences, 15(6), 1729–1743.  https://doi.org/10.5194/hess-15-1729-2011.CrossRefGoogle Scholar
  82. Mirus, B. B., Ebel, B. A., Heppner, C. S., Loague, K. (2011). Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation. Water Resources Research 47(3).  https://doi.org/10.1029/2010wr009906.
  83. Mirus, B. B., Loague, K., VanderKwaak, J. E., Kampf, S. K., & Burges, S. J. (2009). A hypothetical reality of Tarrawarra-like hydrologic response. Hydrological Processes, 23(7), 1093–1103.  https://doi.org/10.1002/hyp.7241.CrossRefGoogle Scholar
  84. Motovilov, Y. G., Gottschalk, L., Engeland, K., & Rodhe, A. (1999). Validation of a distributed hydrological model against spatial observations. Agricultural and Forest Meteorology, 99, 257–277.CrossRefGoogle Scholar
  85. Mroczkowski, M., Raper, P. G., & Kuczera, G. (1997). The quest for more powerful validation of conceptual catchment models. Water Resources Research, 33(10), 2325–2335.  https://doi.org/10.1029/97WR01922.CrossRefGoogle Scholar
  86. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I-a discussion of principles. Journal of Hydrology, 10, 282–290.  https://doi.org/10.1016/0022-1694(70)90255-6.CrossRefGoogle Scholar
  87. Parajka, J., & Blöschl, G. (2008). The value of MODIS snow cover data in validating and calibrating conceptual hydrologic models. Journal of Hydrology, 358(3–4), 240–258.  https://doi.org/10.1016/j.jhydrol.2008.06.006.CrossRefGoogle Scholar
  88. Parkin, G., O’Donnell, G., Ewen, J., Bathurst, J. C., O’Connell, P. E., & Lavabre, J. (1996). Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment. Journal of Hydrology, 175(1–4), 595–613.  https://doi.org/10.1016/s0022-1694(96)80027-8.CrossRefGoogle Scholar
  89. Perrin, C., Michel, C., & Andréassian, V. (2003). Improvement of a parsimonious model for streamflow simulation. Journal of Hydrology, 279(1–4), 275–289.  https://doi.org/10.1016/S0022-1694(03)00225-7.CrossRefGoogle Scholar
  90. Pool, S., Vis, M. J. P., Knight, R. R., & Seibert, J. (2017). Streamflow characteristics from modeled runoff time series – importance of calibration criteria selection. Hydrology and Earth System Sciences, 21(11), 5443–5457.Google Scholar
  91. Pool, S., Vis, M., & Seibert, J. (2018). Evaluating model performance: Towards a non-parametric variant of the Kling-Gupta efficiency. Hydrological Sciences Journal, 63, 13–14, 1941–1953.  https://doi.org/10.1080/02626667.2018.1552002.CrossRefGoogle Scholar
  92. Refsgaard, J. C. (1997). Parameterisation, calibration and validation of distributed hydrological models. Journal of Hydrology, 198, 69–97.CrossRefGoogle Scholar
  93. Refsgaard, J. C., & Knudsen, J. (1996). Operational validation and intercomparison of different types of hydrological models. Water Resources Research, 32(7), 2189–2202.  https://doi.org/10.1029/96WR00896.CrossRefGoogle Scholar
  94. Remondi, F., Kirchner, J. W., Burlando, P., & Fatichi, S. (2018). Water flux tracking with a distributed hydrological model to quantify controls on the spatiotemporal variability of transit time distributions. Water Resources Research, 3081–3099.  https://doi.org/10.1002/2017wr021689.CrossRefGoogle Scholar
  95. Rivera Villarreyes, C. A., Baroni, G., & Oswald, S. E. (2011). Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons. Hydrology and Earth System Sciences, 15(12), 3843–3859.  https://doi.org/10.5194/hess-15-3843-2011.CrossRefGoogle Scholar
  96. Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones, S. B., Knight, R., et al. (2008). Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone Journal, 7(1), 358.  https://doi.org/10.2136/vzj2007.0143.CrossRefGoogle Scholar
  97. Schaefli, B., & Gupta, H. V. (2007). Do nash values have value? Hydrological Processes, 21, 2075–2080.  https://doi.org/10.1002/hyp.CrossRefGoogle Scholar
  98. Schulze-Makuch, D., Carlson, D. A., Cherkauer, D. S., & Malik, P. (1999). Scale dependency of hydraulic conductivity in heterogeneous media. Groundwater, 37(6), 904–919.  https://doi.org/10.1111/j.1745-6584.1999.tb01190.x.CrossRefGoogle Scholar
  99. Seibert, J. (2000). Multi-criteria calibration of a conceptual runoff model using a genetic algorithm. Hydrology and Earth System Science, 4(2), 215–224.  https://doi.org/10.5194/hess-4-215-2000.CrossRefGoogle Scholar
  100. Seibert, J. (2001a). Comment on “On the calibration and verification of two-dimensional, distributed, Hortonian, continuous watershed models“ by Sharika U. S. Senarath et al. Water Resources Research 37(12), 3393–3395.  https://doi.org/10.1029/2000wr000017.CrossRefGoogle Scholar
  101. Seibert, J. (2001b). On the need for benchmarks in hydrological modelling. Hydrological Processes, 15(6), 1063–1064.  https://doi.org/10.1002/hyp.446.CrossRefGoogle Scholar
  102. Seibert, J. (2003). Reliability of model predictions outside calibration conditions. Hydrology Research, 34(5), 477–492.CrossRefGoogle Scholar
  103. Seibert, J., & McDonnell, J. J. (2002). On the dialog between experimentalist and modeler in catchment hydrology: Use of soft data for multicriteria model calibration. Water Resources Research, 38(11), 23-1–23–14  https://doi.org/10.1029/2001wr000978.CrossRefGoogle Scholar
  104. Seibert, J., Rodhe, A., & Bishop, K. (2003). Simulating interactions between saturated and unsaturated storage in a conceptual runoff model. Hydrological Processes, 17(2), 379–390.  https://doi.org/10.1002/hyp.1130.CrossRefGoogle Scholar
  105. Seyfried, M. S., & Wilcox, B. P. (1995). Scale and the nature of spatial variability: Field examples having implications for hydrologic modeling. Water Resources Research, 31(1), 173–184.  https://doi.org/10.1029/94WR02025.CrossRefGoogle Scholar
  106. Sheets, R., & Hendrickx, J. M. H. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31(10), 2401–2409.CrossRefGoogle Scholar
  107. Smerdon, B. D., Mendoza, C. A., & Devito, K. J. (2007). Simulations of fully coupled lake-groundwater exchange in a subhumid climate with an integrated hydrologic model. Water Resources Research, 43(1).  https://doi.org/10.1029/2006wr005137.
  108. Stadnyk, T. A., Delavau, C., Kouwen, N., & Edwards, T. W. D. (2013). Towards hydrological model calibration and validation: Simulation of stable water isotopes using the isoWATFLOOD model. Hydrological Processes, 27(25), 3791–3810.  https://doi.org/10.1002/hyp.9695.CrossRefGoogle Scholar
  109. Staudinger, M., Stoelzle, M., Cochand, F., Seibert, J., Weiler, M., & Hunkeler, D. (in review). Your work is my boundary condition! Challenges and approaches for a closer collaboration between hydrologists and hydrogeologists. Revised version resubmitted to Journal of Hydrology.Google Scholar
  110. Stephenson, G. R., & Freeze, R. A. (1974). Mathematical simulation of subsurface flow contributions to snowmelt runoff, Reynolds Creek Watershed Idaho. Water Resources Research, 10(2), 284–294.  https://doi.org/10.1029/WR010i002p00284.CrossRefGoogle Scholar
  111. Tromp-van Meerveld, I., & Weiler, M. (2008). Hillslope dynamics modeled with increasing complexity. Journal of Hydrology, 361(1–2), 24–40.  https://doi.org/10.1016/j.jhydrol.2008.07.019.CrossRefGoogle Scholar
  112. Turner, J. V., & Barnes, C. J. (1998). Modeling of isotope and hydrogeochemical responses in catchment hydrology. In C. Kendall & J. Mcdonnell (Eds.), Isotope Tracers in Catchment Hydrology (723–760). Elsevier.Google Scholar
  113. Uhlenbrook, S., & Leibundgut, C. (2002). Process-oriented catchment modelling and multiple-response validation. Hydrological Processes, 16(2), 423–440.  https://doi.org/10.1002/hyp.330.CrossRefGoogle Scholar
  114. Vaché, K. B., & McDonnell, J. J. (2006). A process-based rejectionist framework for evaluating catchment runoff model structure. Water Resources Research, 42(2), 1–15.  https://doi.org/10.1029/2005WR004247.CrossRefGoogle Scholar
  115. Vaché, K. B., McDonnell, J. J., & Bolte, J. (2004). On the use of multiple criteria for a posteriori model rejection: Soft data to characterize model performance. Geophysical Research Letters, 31(21), 1–4.  https://doi.org/10.1029/2004GL021577.CrossRefGoogle Scholar
  116. van Huijgevoort, M. H. J., Tetzlaff, D., Sutanudjaja, E. H., & Soulsby, C. (2016). Using high resolution tracer data to constrain water storage, flux and age estimates in a spatially distributed rainfall-runoff model. Hydrological Processes, 30(25), 4761–4778.  https://doi.org/10.1002/hyp.10902.CrossRefGoogle Scholar
  117. Van Meerveld, H. J., Seibert, J., & Peters, N. E. (2015). Hhillslope–riparian‐stream connectivity and flow directions at the panola mountain research watershed. Hydrological Processes, 29, 3556–3574.  https://doi.org/10.1002/hyp.10508.CrossRefGoogle Scholar
  118. VanderKwaak, J. E., & Loague, K. (2001). Hydrologic-response simulations for the R-5 catchment with a comprehensive physics-based model. Water Resources Research, 37(4), 999–1013.  https://doi.org/10.1029/2000WR900272.CrossRefGoogle Scholar
  119. Vis, M., Knight, R., Pool, S., Wolfe, W., & Seibert, J. (2015). Model calibration criteria for estimating ecological flow characteristics. Water (Switzerland), 7(5), 2358–2381.  https://doi.org/10.3390/w7052358.CrossRefGoogle Scholar
  120. Viviroli, D., Mittelbach, H., Gurtz, J., & Weingartner, R. (2009). Continuous simulation for flood estimation in ungauged mesoscale catchments of Switzerland—Part II: Parameter regionalisation and flood estimation results. Journal of Hydrology, 377(1–2), 208–225.  https://doi.org/10.1016/j.jhydrol.2009.08.022.CrossRefGoogle Scholar
  121. von Freyberg, J., Studer, B., Rinderer, M., Kirchner, J. W. (2018). Studying catchment storm response using event- and pre-event-water volumes as fractions of precipitation rather than discharge. Hydrology and Earth System Sciences, 22, 5847–5865.  https://doi.org/10.5194/hess-22-5847-2018.CrossRefGoogle Scholar
  122. Weiler, M. (2017). Macropores and preferential flow—a love-hate relationship. Hydrological Processes, 31(1), 15–19.  https://doi.org/10.1002/hyp.11074.CrossRefGoogle Scholar
  123. Werth, S., Güntner, A., Petrovic, S., & Schmidt, R. (2009). Integration of GRACE mass variations into a global hydrological model. Earth and Planetary Science Letters, 277(1–2), 166–173.  https://doi.org/10.1016/j.epsl.2008.10.021.CrossRefGoogle Scholar
  124. Western, A. W., Grayson, R. B., & Green, T. R. (1999a). The tarrawarra project: High resolution spatial measurement, modelling and analysis of soil moisture and hydrological response. Hydrological Processes, 13(5), 633–652. isi:000079622700002.Google Scholar
  125. Western, A. W., Grayson, R. B., & Green, T. R. (1999b). The Tarrawarra project: High resolution spatial measurement, modelling and analysis of soil moisture and hydrological response. Hydrological Processes, 13(5), 633–652.CrossRefGoogle Scholar
  126. Yilmaz, K. K., Gupta, H. V., & Wagener, T. (2008). A process-based diagnostic approach to model evaluation: Application to the NWS distributed hydrologic model. Water Resources Research, 44(9), 1–18.  https://doi.org/10.1029/2007WR006716.CrossRefGoogle Scholar
  127. Zehe, E., et al. (2014). HESS Opinions: From response units to functional units: A thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments. Hydrology and Earth System Sciences, 18(11), 4635–4655.  https://doi.org/10.5194/hess-18-4635-2014.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jan Seibert
    • 1
    Email author
  • Maria Staudinger
    • 1
  • H. J. (Ilja) van Meerveld
    • 1
  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland

Personalised recommendations