Advertisement

Astrophysical Validation

  • Alan C. CalderEmail author
  • Dean M. Townsley
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

We present examples of validating components of an astrophysical simulation code. Problems of stellar astrophysics are multidimensional and involve physics acting on large ranges of length and time scales that are impossible to include in macroscopic models on present computational resources. Simulating these events thus necessitates the development of sub-grid-scale models and the capability to postprocess simulations with higher fidelity methods. We present an overview of the problem of validating astrophysical models and simulations illustrated with two examples. First, we present a study aimed at validating hydrodynamics with high energy density laboratory experiments probing shocks and fluid instabilities. Second, we present an effort at validating code modules for use in both macroscopic simulations of astrophysical events and for postprocessing Lagrangian tracer particles to calculate detailed abundances from thermonuclear reactions occurring during an event.

Keywords

Astrophysics Supernovae Nucleosynthesis Fluid instabilities 

Notes

Acknowledgements

This contribution was supported in part by the Department of Energy through grant DE-FG02-87ER40317 and the research described here was supported in part by earlier grant B341495 to the Center for Astrophysical Flashes at the University of Chicago. The software used in this work was in part developed by the DOE-supported ASC/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago. This research has made use of NASA’s Astrophysics Data System. The authors thank Eric Winsberg and Bruce Fryxell for helpful discussions about this manuscript.

References

  1. AIAA. (1998). Guide for the verification and validation of computational fluid dynamics simulations. AIAA Report G-077-1998. Reston, VA: American Institute of Aeronautics and Astronautics.Google Scholar
  2. Alexakis, A., Calder, A. C., Heger, A., et al. (2004). Astrophysical Journal, 602, 931.CrossRefGoogle Scholar
  3. AMREX. (2018). https://amrex-codes.github.io/, freely available.
  4. Arnett, D., Fryxell, B., & Mueller, E. (1989). Astrophysical Journal Letters, 341, L63.CrossRefGoogle Scholar
  5. Blottner, F. G. (1990). Journal of Spacecraft and Rockets, 27, 113. (Also AIAA Paper 89–0269, January 1989).Google Scholar
  6. Boehly, T. R., Craxton, R. S., Hinterman, T. H., et al. (1995). Review of Scientific Instruments, 66, 508.CrossRefGoogle Scholar
  7. Boehm, B. W. (1981). Software engineering economics (1st ed.). Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
  8. Bradley, D. K., Delettrez, J. A., Epstein, R., et al. (1998). Physics of Plasmas, 5, 1870.CrossRefGoogle Scholar
  9. Calder, A. C. (2005). Astrophysics and Space Science, 298, 25.CrossRefGoogle Scholar
  10. Calder, A. C., Hoffman, M. M., Willcox, D. E., et al. (2018). Journal of Physics: Conference Series, 1031, 012016.Google Scholar
  11. Calder, A. C., Krueger, B. K., Jackson, A. P., & Townsley, D. M. (2013). Frontiers of Physics, 8, 168.CrossRefGoogle Scholar
  12. Calder, A. C., Taylor, N. T., Antypas, K., Sheeler, D., & Dubey, A. (2006). Numerical modeling of space plasma flows. In G. P. Zank & N. V. Pogorelov (Eds.), Astronomical Society of the Pacific Conference Series (Vol. 359, p. 119).Google Scholar
  13. Calder, A. C., et al. (2000). In Proceedings of Supercomputing 2000. http://sc2000.org.
  14. Calder, A. C., Fryxell, B., Plewa, T., et al. (2002). Astrophysical Journal Supplement Series, 143, 201.CrossRefGoogle Scholar
  15. Calder, A. C., Townsley, D. M., Seitenzahl, I. R., et al. (2007). Astrophysical Journal, 656, 313.CrossRefGoogle Scholar
  16. Chandrasekhar, S. (1981). Hydrodynamic and hydromagnetic stability. New York: Dover.zbMATHGoogle Scholar
  17. Colella, P., & Glaz, H. M. (1985). Journal of Computational Physics, 59, 264.MathSciNetCrossRefGoogle Scholar
  18. Colella, P., & Woodward, P. R. (1984). Journal of Computational Physics, 54, 174.CrossRefGoogle Scholar
  19. Dubey, A., Antypas, K., Ganapathy, M. K., et al. (2009). Parallel Computing, 35, 512.CrossRefGoogle Scholar
  20. Dubey, A., Calder, A. C., Daley, C., et al. (2013). The International Journal of High Performance Computing Applications, 27, 360.Google Scholar
  21. Dubey, A., Antypas, K., Calder, A. C., et al. (2014). The International Journal of High Performance Computing Applications, 28, 225.Google Scholar
  22. Dubey, A., Weide, K., Lee, D., et al. (2015). Software: Practice and Experience, 45, 233.Google Scholar
  23. Dwarkadas, V., Plewa, T., Weirs, G., Tomkins, C., & Marr-Lyon, M. (2005). Simulation of vortex-dominated flows using the FLASH code. In T. Plewa, T. Linde, & V. Gregory Weirs (Eds.) (pp. 527–537). Heidelberg: Springer.Google Scholar
  24. Fryxell, B., Arnett, D., & Mueller, E. (1991). Astrophysical Journal, 367, 619.CrossRefGoogle Scholar
  25. Fryxell, B., Olson, K., Ricker, P., et al. (2000). Astrophysical Journal Supplement Series, 131, 273.CrossRefGoogle Scholar
  26. Fryxell, B. A., Müller, E., & Arnett, D. (1989). MPIA Technical Report.Google Scholar
  27. Fureby, C. (1996). Physics of Fluids, 8, 1301.CrossRefGoogle Scholar
  28. Gamboa, E. J., Drake, R. P., Falk, K., et al. (2014). Physics of Plasmas, 21, 042701.CrossRefGoogle Scholar
  29. Gamboa, E. J., Huntington, C. M., Trantham, M. R., et al. (2012). Review of Scientific Instruments, 83, 10E108.CrossRefGoogle Scholar
  30. Godunov, S., Zabrodin, A., & Prokopov, G. (1962). USSR Computational Mathematics and Mathematical Physics, 1, 1187.CrossRefGoogle Scholar
  31. Godunov, S. K. (1959). Mathematics Sbornik, 47, 271.Google Scholar
  32. Grinstein, F., Margolin, L., & Rider, W. (2007). Implicit large eddy simulation: Computing turbulent fluid dynamics. Cambridge University Press.Google Scholar
  33. Hearn, N. C., Plewa, T., Drake, R. P., & Kuranz, C. (2007). Astrophysics and Space Science, 307, 227.CrossRefGoogle Scholar
  34. Hoffman, M. M., Willcox, D. E., Katz, M. P., et al. (2019). Astrophysical Journal. (in preparation).Google Scholar
  35. Kane, J. O., Robey, H. F., Remington, B. A., et al. (2001). Physical Review E, 63, 055401.CrossRefGoogle Scholar
  36. Kritsuk, A. G., Norman, M. L., & Padoan, P. (2006). Astrophysical Journal Letters, 638, L25.CrossRefGoogle Scholar
  37. Larsen, J. T., & Lane, S. M. (1994). Journal of Quantitative Spectroscopy and Radiative Transfer, 51, 179.CrossRefGoogle Scholar
  38. Lee, D. (2013). Journal of Computational Physics, 243, 269.MathSciNetCrossRefGoogle Scholar
  39. Lee, D., & Deane, A. E. (2009). Journal of Computational Physics, 228, 952.MathSciNetCrossRefGoogle Scholar
  40. Lee, D., Faller, H., & Reyes, A. (2017a). Journal of Computational Physics, 341, 230.Google Scholar
  41. Lee, D., Tzeferacos, P., Couch, S., et al. (2017b). Astrophysical Journal. (in preparation).Google Scholar
  42. Li, S. (2010). Journal of Computational and Applied Mathematics, 233, 3139. Finite Element Methods in Engineering and Science (FEMTEC 2009).Google Scholar
  43. Li, Z., & Wood, R. (2017). Journal of Computational and Applied Mathematics, 318, 259.MathSciNetCrossRefGoogle Scholar
  44. MacNeice, P., Olson, K. M., Mobarry, C., de Fainchtein, R., & Packer, C. (1999). NASA Technical Reports, CR-1999-209483.Google Scholar
  45. MacNeice, P., Olson, K. M., Mobarry, C., de Fainchtein, R., & Packer, C. (2000). Computer Physics Communications, 126, 330.Google Scholar
  46. Majda, A. (1984). Compressible fluid flow and systems of conservation laws in several space variables (p. 172).Google Scholar
  47. Margolin, L. (2014). Mechanics Research Communications, 57, 10.CrossRefGoogle Scholar
  48. Margolin, L. G., & Rider, W. J. (2002). International Journal for Numerical Methods in Fluids, 39, 821.MathSciNetCrossRefGoogle Scholar
  49. Margolin, L. G., & Shashkov, M. (2008). International Journal for Numerical Methods in Fluids, 56, 991.MathSciNetCrossRefGoogle Scholar
  50. Meshkov, E. E. (1969). Izvestiya Academic of Science USSR Fluid Dynamics, 4, 101.Google Scholar
  51. Miles, B. J., van Rossum, D. R., Townsley, D. M., et al. (2016). Astrophysical Journal, 824, 59.CrossRefGoogle Scholar
  52. Mitran, S. M. (2009). Numerical modeling of space plasma flows: ASTRONUM-2008. In N. V. Pogorelov, E. Audit, P. Colella & G. P. Zank (Eds.), Astronomical Society of the Pacific Conference Series (Vol. 406, p. 249).Google Scholar
  53. Moore, K., Townsley, D. M., & Bildsten, L. (2013). Astrophysical Journal, 776, 97.CrossRefGoogle Scholar
  54. Muller, E., Hillebrandt, W., Orio, M., et al. (1989). Astronomy and Astrophysics, 220, 167.Google Scholar
  55. Oberkampf, W., & Roy, C. (2010). Verification and validation in scientific computing. Cambridge University Press.Google Scholar
  56. Plewa, T., Calder, A. C., & Lamb, D. Q. (2004). Astrophysical Journal Letters, 612, L37.CrossRefGoogle Scholar
  57. Richtmyer, R. D. (1960). Communications on Pure and Applied Mathematics, 13, 297.MathSciNetCrossRefGoogle Scholar
  58. Roache, P. (1998a). Verification and validation in computational science and engineering. Hermosa.Google Scholar
  59. Roache, P. J. (1998b). Fundamentals of computational fluid dynamics. Albuquerque, USA: Hermosa.Google Scholar
  60. Robey, H. F., Kane, J. O., Remington, B. A., et al. (2001). Physics of Plasmas, 8, 2446.CrossRefGoogle Scholar
  61. Rosner, R., Calder, A. C., Dursi, L. J., et al. (2000). Computing in Science and Engineering, 2, 33.CrossRefGoogle Scholar
  62. Sharpe, G. J. (1999). Monthly Notices of the Royal Astronomical Society, 310, 1039.CrossRefGoogle Scholar
  63. Shu, Q., Ateljevich, E., Schwartz, P. O., & Colella, P. (2017). Verification of an adaptive mesh, embedded boundary model for flood modeling applications.Google Scholar
  64. Soures, J. M., McCrory, R. L., Verdon, C. P., et al. (1996). Physics of Plasmas, 3, 2108.CrossRefGoogle Scholar
  65. Stoeckl, C., Fiksel, G., Guy, D., et al. (2012). Review of Scientific Instruments, 83, 033107.CrossRefGoogle Scholar
  66. Storer, T. (2017). ACM Computing Surveys, 50(47), 1.CrossRefGoogle Scholar
  67. Taylor, G. (1950). Royal Society of London Proceedings Series A, 201, 192.Google Scholar
  68. Timmes, F., Dimonte, G., Kane, J., et al. (2004). Computing in Science and Engineering, 6, 10.Google Scholar
  69. Townsley, D. M., Calder, A. C., Asida, S. M., et al. (2007). Astrophysical Journal, 668, 1118.CrossRefGoogle Scholar
  70. Townsley, D. M., Jackson, A. P., Calder, A. C., et al. (2009). Astrophysical Journal, 701, 1582.CrossRefGoogle Scholar
  71. Townsley, D. M., Miles, B. J., Timmes, F. X., Calder, A. C., & Brown, E. F. (2016). Astrophysical Journal Supplement Series, 225, 3.CrossRefGoogle Scholar
  72. Travaglio, C., Hillebrandt, W., Reinecke, M., & Thielemann, F. -K. (2004). Astronomy and Astrophysics, 425, 1029.Google Scholar
  73. Tzeferacos, P., Fatenejad, M., Flocke, N., et al. (2015). High energy density physics. In 10th International Conference on High Energy Density Laboratory Astrophysics, (Vol. 17, Part A, p. 24).Google Scholar
  74. van der Holst, B., Tóth, G., Sokolov, I. V., et al. (2011). Astrophysical Journal Supplement Series, 194, 23.CrossRefGoogle Scholar
  75. Weirs, G., Dwarkadas, V., Plewa, T., Tomkins, C., & Marr-Lyon, M. (2005a). Astrophysics and Space Science, 298, 341.Google Scholar
  76. Weirs, G., Dwarkadas, V., Plewa, T., Tomkins, C., & Marr-Lyon, M. (2005b). Validating the flash code: Vortex-dominated flows (pp. 341–346). Dordrecht: Springer. (G. Kyrala (ed.))Google Scholar
  77. Willcox, D. E., Townsley, D. M., Calder, A. C., Denissenkov, P. A., & Herwig, F. (2016). Astrophysical Journal, 832, 13.CrossRefGoogle Scholar
  78. Winsberg, E. (2010). Science in the age of computer simulation. University of Chicago Press.Google Scholar
  79. Zhang, J., Messer, O. E. B., Khokhlov, A. M., & Plewa, T. (2007). Astrophysical Journal, 656, 347.CrossRefGoogle Scholar
  80. Zhiyin, Y. (2015). Chinese Journal of Aeronautics, 28, 11.CrossRefGoogle Scholar
  81. Zingale, M., Timmes, F. X., Fryxell, B., et al. (2001). Astrophysical Journal Supplement Series, 133, 195.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Stony Brook UniversityStony BrookUSA
  2. 2.University of AlabamaTuscaloosaUSA

Personalised recommendations