Advertisement

Validation of Particle Physics Simulation

  • Peter MättigEmail author
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

The procedures of validating computer simulations of particle physics events at the LHC are summarized. Because of the strongly fluctuating particle content of LHC events and detector interactions, particle-based Monte Carlo methods are an indispensable tool for data analysis. Simulation in particle physics is founded on factorization and thus its global validation can be realized by validating each individual step in the simulation. This can be accomplished by drawing on results of previous measurements, in situ studies, and models. What is particularly important in particle physics is to quantify how well a simulation is validated such that a systematic uncertainty can be assigned to a measurement. The simulation is tested for a wide range of processes and agrees with data within the assigned uncertainties.

Keywords

LHC Simulation Validation Higgs 

Notes

Acknowledgements

I am grateful to Martin King and Michael Stöltzner and anonymous referees for valuable comments. I also profited highly from discussions with colleagues from the Research Group “Epistemology of the LHC” funded by the DFG under grant FOR 2063.

References

  1. ALICE Collaboration. (2008). The ALICE experiment at the CERN LHC. JINST, 3, S08002.Google Scholar
  2. ATLAS Collaboration. (2008). The ATLAS experiment at the CERN Large Hadron Collider. JINST, 3, S08003.Google Scholar
  3. ATLAS Collaboration. (2012a). A study of the material in the ATLAS inner detector using secondary hadronic interactions. JINST, 7, P01013. arXiv:1110.6191.
  4. ATLAS Collaboration. (2012b). Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B, 716, 1. arXiv:1207.7214.
  5. ATLAS Collaboration. (2013). An computer generated image representing how ATLAS detects particles. https://cds.cern.ch/record/1505342.
  6. ATLAS Collaboration. (2014a). Electron and photon energy calibration with the ATLAS detector using LHC run 1 data. European Physical Journal C, 74, 3071. arXiv:1407.5063.
  7. ATLAS Collaboration. (2014b). http://cds.cern.ch/record/1697048.
  8. ATLAS Collaboration. (2014c). Muon reconstruction efficiency and momentum resolution of the ATLAS experiment in proton-proton collisions at \(\sqrt{s} = 7\) TeV in 2010. European Physical Journal C, 74(9), 3034. arXiv:1404.4562.
  9. ATLAS Collaboration. (2015). Jet energy measurement and its systematic uncertainty in proton-proton collisions at \(\sqrt{s}= 7\) TeV. European Physical Journal C, 75, 17. arXiv:1406.0076.
  10. ATLAS Collaboration. (2016a). Charged-particle distributions in\(\sqrt{s}= 13\) TeV pp interactions measured with the ATLAS detector at the LHC. j.physletb.2016.04.050, arXiv:1602.01633
  11. ATLAS Collaborations. (2016b). Measurement of the transverse momentum and \(\phi ^*_{\eta }\) distributions of Drell–Yan lepton pairs in proton-proton collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector. European Physical Journal C, 76(5), 1–61. arXiv:1512.02192.
  12. ATLAS Collaboration. (2016c). Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum using 36.1 fb\(^{-1}\) of \(\sqrt{13}\) TeV pp collision data with the ATLAS detector, JHEP 06 (2018) 108. arXiv:1711.11520.
  13. ATLAS Collaboration. (2017a). A Precision measurement and interpretation of inclusive \(W^+\), \(W^-\) and \(Z/\gamma \) production cross sections with the ATLAS detector. The European Physical Journal C, 77, 367. arXiv:1612.03016
  14. ATLAS Collaboration. (2017b). Electron efficiency measurements with the ATLAS detector using 2012 LHC proton-proton collision data. European Physical Journal C, 77, 195. arXiv:1612.01456.
  15. ATLAS Collaboration. (2017c). Measurements of top-quark pair to Z-boson cross-section ratios at \(\sqrt{s}=13\), 8, 7 TeV with the ATLAS detector, Journal of High Energy Physics, 02, 117. arXiv:1612.03636
  16. ATLAS Collaboration. (2018). Measurement of the Higgs boson coupling properties in the \(H\rightarrow ZZ*\rightarrow 4l\) decay channel at \(\sqrt{s}= 13\) TeV with the ATLAS detector. JHEP, 03, 095. arXiv: 1712.02304.
  17. Butterworth, J., et al. (2016) PDF4LHC recommendations for LHC run II. Journal of Physics G: Nuclear and Particle Physics, 43, 023001. arXiv:1510.03865.CrossRefGoogle Scholar
  18. Campbell, A. W., Huston, J. W., & Stirling, W. J. (2007). Hard interactions of Quarks and Gluons: A primer for LHC physics. Reports on Progress in Physics, 70, 89. arXiv:hep-ph/0611148.CrossRefGoogle Scholar
  19. CMS Collaboration. (2008). The CMS experiment at the CERN LHC. JINST, 3, S08004.Google Scholar
  20. CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716, 30. arXiv:1207.7235.
  21. Daniel Elvira, V. (2017). Impact of detector simulation in particle physics collider experiments. Physics Reports, 695, 1. arXiv:1706.04293.MathSciNetCrossRefGoogle Scholar
  22. Evans, L., Bryant, P. (Eds.). (2008). LHC machine. JINST, 3, S08001.Google Scholar
  23. Ferrari, A., Sala, P., Fasso, A., & Ranft, J. (2005). FLUKA: A multi-particle transport code, CERN-2005-10, INFN/TC 05/11, SLAC-R-773.Google Scholar
  24. Ford, R., & Nelson, W. (1978). The EGS Code System - Version 3. Stanford Linear Accelerator Center Report SLAC-210.Google Scholar
  25. GEANT4 Collaboration, Agostinelli, S., et al. (2003). Geant4 - a simulation toolkit. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250–303.Google Scholar
  26. Gelmini, G. (2015). TASI 2014 lectures: The hunt for dark matter. arXiv:1502.01320v1.
  27. Gleisberg, T., et al. (2009) Event generation with SHERPA 1.1. JHEP, 02, 007. arXiv:0811.4622.
  28. Knowles, I. G., & Lafferty, G. D. (1997). Hadronization in \(Z^0\) decay. Journal of Physics G: Nuclear and Particle Physics, 23, 731. hep-ph/9705217.CrossRefGoogle Scholar
  29. LEP collaborations ALEPH and DELPHI and L3 and OPAL and SLD Collaborations and LEP Electroweak Working Group and SLD Electroweak Group and SLD Heavy Flavour Group. Schael, S., et al. (2006) Precision electroweak measurements on the Z resonance. Physics Reports, 427, 257. hep-ex/0509008.Google Scholar
  30. LHC Higgs Cross Section Working Group, Heinemeyer, S., Mariotti, C., Passarino, G., & Tanaka, R. (Eds.). (2013). Handbook of LHC higgs cross sections: 3. Higgs properties, CERN-2013-004 (CERN, Geneva). arXiv: 1307.1347 [hep-ph].
  31. LHCb Collaboration. (2008). The LHCb experiment at the CERN LHC. JINST, 3, S08005.Google Scholar
  32. Mättig, P. (1989). The structure of jets in \(^+e^-\) collisions. Physical Report, 177, 141.CrossRefGoogle Scholar
  33. Morrison, M. (2015). Reconstructing reality. Oxford University Press.Google Scholar
  34. Patrignani, C., et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update.Google Scholar
  35. Pich, A. (2012). The standard model of electroweak interactions. CERN Yellow Report CERN-2012-001. arXiv:1201.0537.
  36. Planck Collaboration (P.A.R. Ade et al.). (2016). Planck 2015 results. XIV. Dark energy and modified gravity. Astronomy & Astrophysics, 594, A14. arXiv:1502.01590 (2015).
  37. Quigg, C. (2013). Gauge theories of the strong, weak, and electromagnetic interactions. Princeton University Press.Google Scholar
  38. Salam, G. P. (2010). Elements of QCD for hadron colliders. CERN Yellow Report CERN-2010-002 (pp. 45–100). arXiv:1011.5131.
  39. Seymour, M. H. (2004) Quantum ChromoDynamics. Lectures given at the 2004 European School of High-Energy Physics, St. Feliu de Guixols, Barcelona, Spain, 30 May–12 June 2004 and at the 2009 Latin American School of High-Energy Physics, Recinto Quirama, Antioquia, Colombia, 15–28 March 2009 (pp. 97–143). CERN-2006-003 and CERN-2010-001 arXiv:hep-ph/0505192.
  40. Winsberg, E. (2015). Computer Simulations in Science. Stanford Encyclopedia of Philosophy.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Physikalisches Institut der Universität BonnBonnGermany

Personalised recommendations