Advertisement

Standards for Evaluation of Atmospheric Models in Environmental Meteorology

  • K. Heinke SchlünzenEmail author
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

This chapter focuses on evaluation guidelines developed in the field of environmental meteorology. Definitions for verification, validation, and evaluation as used in the field of environmental meteorology are given. A generic structure of a model evaluation guideline is introduced consisting of three parts: (A) Specification of application area, (B) evaluation steps to be performed by the model developer, and (C) evaluation steps to be performed by the model user. The generic structure is detailed using two examples from environmental meteorology. For both examples, an accepted standard for model evaluation was achieved by involving the relevant stakeholders in the harmonization process. The methodology to achieve a standard and why standards are relevant in environmental meteorology is outlined.

Keywords

Verification Validation Evaluation Environmental meteorology Guideline Standard 

Abbreviations

CCA-EM

Commission for Clean Air

EGa

VDI 3783 Part 7 (VDI 2017a)

EGb

VDI 3783 Part 9 (VDI 2017b)

LES

Large eddy simulation

MQI

Model quality indicator

MQO

Model quality objective

RANS

Reynolds-averaged Navier–Stokes

Notes

Acknowledgements

The guideline development in CCA-EM includes many experts in the field of environmental meteorology that support the development of standards since more than 60 years. We have to thank all those involved in this time-consuming and voluntary work, since without their contributions to the development of environmental meteorology standards the atmosphere would be less healthy and environmental friendly.

The research needed for this contribution is supported through the Cluster of Excellence “CliSAP” (EXC177) funded by the German Science Foundation, the research project UrbMod funded by the state of Hamburg, Germany, and last not least the German Environment Agency UBA via UFOPLAN project 3712 43 241.

The content of this paper is in the responsibility of the author.

References

  1. Baklanov, A., Schlünzen, K. H., Suppan, P., Baldasano, J., Brunner, D., Aksoyoglu, S., et al. (2014). Online coupled regional meteorology chemistry models in Europe. Current status and prospects. Atmospheric Chemistry and Physics, 14, 317–398,  https://doi.org/10.5194/acp-14-317-2014.CrossRefGoogle Scholar
  2. BMUB. (2016). Entwurf zur Anpassung der Ersten Allgemeinen Verwaltungsvorschrift zum Bundes–Immissionsschutzgesetz (Technische Anleitung zur Reinhaltung der Luft – TA Luft) Stand: 09.09.2016. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Retrieved June 21, 2017, from www.bmub.bund.de/N53642/.
  3. Cox, R., Bauer, B. L., & Smith, T. (1998). Mesoscale model intercomparison. Bulletin of the American Meteorological Society, 87, 167–196.Google Scholar
  4. Deardorff, J. W. (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. Journal Geophysical Research, 83, 1889–1903.CrossRefGoogle Scholar
  5. Dennis, R., Fox, T., Fuentes, M., Gilliland, A., Hanna, S., Hogrefe, C., et al. (2010). A framework for evaluating regional-scale numerical photochemical modeling systems. Environmental Fluid Mechanics, 10, 471–489.CrossRefGoogle Scholar
  6. Di Sabatino, S., Olesen, H. R., Berkowicz, R., Franke, J., Schatzmann, M., Leitl, B., et al. (2011a). Towards a model evaluation protocol for urban scale flow and dispersion models. International Journal of Environment and Pollution, 47, 326–336.CrossRefGoogle Scholar
  7. Di Sabatino, S., Buccolieri, R., Olesen, H. R., Ketzel, M., Berkowicz, R., Franke, J., et al. (2011b). COST 732 in practice: The MUST model evaluation exercise. International Journal of Environment and Pollution, 44, 403–418.  https://doi.org/10.1504/ijep.2011.038442.CrossRefGoogle Scholar
  8. EC. (1980). Council Directive 80/779/EEC of 15 July 1980 on air quality limit values and guide values for sulphur dioxide and suspended particulates. Official Journal of the European Communities, L 229, 30–48.Google Scholar
  9. EC. (2008). Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (OJL 152, 11.6.2008, pp. 1–44). Retrieved November 09, 2011, from http://eurlex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:152:0001:0044:EN:PDF.
  10. Franke, J., Hellsten, A., Schlünzen, K. H., & Carissimo, B. (2011). The COST 732 best practice guideline for CFD simulation of flows in the urban environment - a summary. International Journal of Environment and Pollution, 44, 419–427.  https://doi.org/10.1504/IJEP.2011.038443.CrossRefGoogle Scholar
  11. Geertsema, G., Schlünzen, K. H., ter Pelkwijk, H., Jalkanen, L., Baklanov, A., Fisher, B., et al. (2018). User training for mesoscale modelling applications to air pollution. In R. S. Sokhi, A. Baklanov, & K. H. Schlünzen (Eds.), Mesoscale modelling for meteorological and air pollution applications. Anthem Press, London. ISBN:9781783088263.Google Scholar
  12. GLA. (2002). 50 years on. The struggle for air quality in London since the great smog of December 1952. Mayor of London, Greater London Authority.Google Scholar
  13. Hay, J. S., & Pasquill, F. (1957). Diffusion from a fixed source at a height of a few hundred feet in the atmosphere. Journal of Fluid Mechanics, 2, 299.  https://doi.org/10.1127/0941-2948/2012/0356.CrossRefGoogle Scholar
  14. Letzel, M. O., Helmke, C., Ng, E., An, X., Lai, A., & Raasch, S. (2012). LES case study on pedestrian level ventilation in two neighbourhoods in Hong Kong. Meteorologische Zeitschrift, 21, 575–589.CrossRefGoogle Scholar
  15. Luft, T. A. (2002). Technical Instruction on Air Quality Control – Erste Allgemeine Verwaltungsvorschrift zum Bundes-Immissionsschutzgesetz, June 24, 2002. GMBl. Nr. 25-29, S. 511.Google Scholar
  16. Meroney, R., Ohba, R., Leitl, B., Kondo, H., Grawe, D. (2016). Review of CFD guidelines for dispersion modeling. Fluids, 1–14,  https://doi.org/10.3390/fluids1020014.CrossRefGoogle Scholar
  17. Nordmann, S., Quass, U., Schlünzen, K. H., Müller, W. J., & Jäckel, S. (2017). CEN/EU Richtlinienaktivitäten zur Qualitätssicherung von Ausbreitungsrechnungen und Verursacheranalysen. Gefahrstoffe-Reinhaltung der Luft, 7(8), 303–308.Google Scholar
  18. Olesen, H. R. (2017). Initiative on “Harmonisation within Atmospheric Dispersion Modelling for Regulatory Purposes”. Retrieved June 25, 2017, from http://www.harmo.org/.
  19. Popper K. R. (1982). Logik der Forschung. Verlag J.C.B. Mohr (Paul Siebeck), Tübingen (pp. 450).Google Scholar
  20. Schlünzen, K. H. (1996). Validierung hochauflösender Regionalmodelle. Ber. aus dem Zentrum f. Meeres- und Klimaforschung, Meteorologisches Institut, Universität Hamburg, A23, 184. http://www.bis.zmaw.de/fileadmin/Bib/Volltexte/ZMK-A23.pdf.
  21. Schlünzen, K. H. (1997). On the validation of high-resolution atmospheric mesoscale models. Journal of Wind Engineering and Industrial Aerodynamics, 67 & 68, 479–492.CrossRefGoogle Scholar
  22. Schlünzen, K. H., & Katzfey, J. J. (2003). Relevance of sub-grid-scale land-use effects for mesoscale models. Tellus, 55A, 232–246.CrossRefGoogle Scholar
  23. Schlünzen, K. H., & Sokhi, R. S. (Eds.) (2008). Overview of tools and methods for meteorological and air pollution mesoscale model evaluation and user training. Joint report of COST Action 728 and GURME. GAW Report No. 181 (115 pp).Google Scholar
  24. Schlünzen, K. H., Grawe, D., Bohnenstengel, S. I., Schlüter, I., & Koppmann, R. (2011). Joint modelling of obstacle induced and mesoscale changes – current limits and challenges. Journal of Wind Engineering and Industrial Aerodynamics, 99, 217–225.  https://doi.org/10.1016/j.jweia.2011.01.009.CrossRefGoogle Scholar
  25. Schlünzen, K. H., Conrady, K., & Purr, C. (2016). Typical performances of mesoscale meteorology models. In: D. G. Steyn & N. Chaumerliac (Eds.) Air pollution modeling and its application XXIV, air pollution modeling and its application XXIV (p 447–457).  https://doi.org/10.1007/978-3-319-24478-5_72.Google Scholar
  26. Schlünzen, K. H., Grawe, D., & Oettl, D. (2017). Qualitätssicherung in der Ausbreitungsrechnung - Evaluierungsrichtlinien für mesoskalige und mikroskalige Windfeldmodelle. Gefahrstoffe-Reinhaltung der Luft, 7(8), 298–302.Google Scholar
  27. Schlünzen, K. H., Builtjes, P., Deserti, M., Douros, J., Galmarini, S., Miranda, A. I., Palau, J. L., & Schere, K. (2018). Evaluating the performance of mesoscale meteorology models used for air quality simulations. In: R. S. Sokhi, A. Baklanov, & K. H. Schlünzen (Eds.), Mesoscale modelling for meteorological and air pollution applications. Anthem Press, London. ISBN:9781783088263.Google Scholar
  28. Thunis, R., Galmarini, S., Martilli, A., Clappier, A., Andronopoulos, S., Bartzis, J., et al. (2003). MESOCOM: An inter-comparison exercise of mesoscale flow models applied to an ideal case simulation. Atmospheric Environment, 37, 363–382.  https://doi.org/10.1016/s1352-2310(02)00888-9.CrossRefGoogle Scholar
  29. VDI. (2000). VDI 3945 Part 3 Environmental meteorology - Atmospheric dispersion models - Particle model. Berlin, Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3945-blatt-3/36552631.
  30. VDI. (2010). VDI 3783 Part 13: Environmental meteorology - Quality control concerning air quality forecast - Plant-related pollution control - Dispersion calculation according to TA Luft. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-13/121969008.
  31. VDI. (2015). VDI 3783 Part 16: Environmental meteorology - Prognostic mesoscale wind field models - Methods for licensing procedures according to TA Luft. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-16/228625611.
  32. VDI. (2017a). VDI 3783 Part 7: Environmental meteorology - Prognostic mesoscale wind field models – Evaluation for dynamically and thermodynamically induced flow fields. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-7/267500583.
  33. VDI. (2017b). VDI 3783 Part 9: Environmental meteorology - Prognostic microscale wind field models - Evaluation for flow around buildings and obstacles. Beuth-Verlag. Retrieved July 27, 2017, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-9/267500591.
  34. VDI. (2017c). VDI 3783 Part 20: Environmental meteorology – Testing the transferability of meteorological data for application within the context of TA Luft. Berlin: Beuth Verlag. Retrieved January 16, 2019, from https://www.beuth.de/en/technical-rule/vdi-3783-blatt-20/261571898.
  35. VDI. (2018). VDI 3783 Part 15.1: Environmental meteorology – Simplified method for estimating nitrogen deposition. In preparation, agreed draft published 2018. (https://www.beuth.de/en/draft-technical-rule/vdi-3783-blatt-15-1/288390435). publication of standard in 2019 (personal communication).

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Meteorological Institute, Center for Earth System Research and Sustainability (CEN), Universität HamburgHamburgGermany

Personalised recommendations