Imprecise Probabilities

  • Seamus BradleyEmail author
Part of the Simulation Foundations, Methods and Applications book series (SFMA)


This chapter explores the topic of imprecise probabilities (IP) as it relates to model validation. IP is a family of formal methods that aim to provide a better representation of severe uncertainty than is possible with standard probabilistic methods. Among the methods discussed here are using sets of probabilities to represent uncertainty, and using functions that do not satisfy the additvity property. We discuss the basics of IP, some examples of IP in computer simulation contexts, possible interpretations of the IP framework and some conceptual problems for the approach. We conclude with a discussion of IP in the context of model validation.


Imprecise probabilities Lower previsions Credal sets Formal epistemology Computer simulation 


  1. Augustin, T., Coolen, F. P., de Cooman, G., & Troffaes, M. C. (Eds.) (2014). Introduction to imprecise probabilities. John Wiley and Sons.Google Scholar
  2. Bradley, S. (2014). Imprecise probabilities. In E. N. Zalta (ed.), The Stanford encyclopedia of philosophy.Google Scholar
  3. Bradley, S. (2015). How to choose among choice functions. In ISIPTA 2015 proceedings (pp. 57–66).Google Scholar
  4. Bradley, S. (2016). Vague chance. Ergo, 3(20)Google Scholar
  5. Bradley, S., & Steele, K. (2014a). Should subjective probabilities be sharp? Episteme, 11, 277–289.CrossRefGoogle Scholar
  6. Bradley, S., & Steele, K. (2014b). Uncertainty, learning and the “problem” of dilation. Erkenntnis, 79, 1287–1303.MathSciNetCrossRefGoogle Scholar
  7. Chandler, J. (2014). Subjective probabilities need not be sharp. Erkenntnis, 79, 1273–1286.MathSciNetCrossRefGoogle Scholar
  8. Cozman, F. (2012). Sets of probability distributions, independence and convexity. Synthese, 186, 577–600.MathSciNetCrossRefGoogle Scholar
  9. de Cooman, G., & Troffaes, M. (2004). Coherent lower previsions in systems modelling: Products and aggregation rules. Reliability Engineering and System Safety, 85, 113–134.Google Scholar
  10. Dempster, A. (1967). Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics, 38, 325–339.MathSciNetCrossRefGoogle Scholar
  11. Elga, A. (2010). Subjective probabilities should be sharp. Philosophers’ Imprint, 10.Google Scholar
  12. Ferson, S., & Ginzburg, L. R. (1996). Different methods are needed to propagate ignorance and variability. Reliability Engineering and System Safety, 54, 133–144.CrossRefGoogle Scholar
  13. Ferson, S., & Hajagos, J. G. (2004). Arithmetic with uncertain numbers: Rigorous and (often) best possible answers. Reliability Engineering and System Safety, 85, 135–152.CrossRefGoogle Scholar
  14. Ferson, S., Joslyn, C. A., Helton, J. C., Oberkampf, W. L., & Sentz, K. (2004). Summary from the epistemic uncertainty workshop: Consensus amid diversity. Reliability Engineering and System Safety, 85, 355–369.CrossRefGoogle Scholar
  15. Fetz, T., & Oberguggenberger, M. (2004). Propagation of uncertainty through multivariate functions in the framework of sets of probability measures. Reliability Engineering and System Safety, 85, 73–87.CrossRefGoogle Scholar
  16. Frigg, R., Bradley, S., Du, H., & Smith, L. A. (2014). Laplace’s demon and the adventures of his apprentices. Philosophy of Science, 81, 31–59.MathSciNetCrossRefGoogle Scholar
  17. Gong, R., & Meng, X. -L. (2017). Judicious judgment meets unsettling update: Dilation, sure loss and simpson’s paradox. arXiv:1712.08946v1.
  18. Good, I. J. (1952). Rational decisions. Journal of the Royal Statistical Society Series B (Methodological), 14, 107–114.MathSciNetCrossRefGoogle Scholar
  19. Good, I. J. (1962). Subjective probability as the measure of a non-measurable set. In Logic, methodology and philosophy of science: Proceedings of the 1960 international congress (pp. 319–329).CrossRefGoogle Scholar
  20. Hájek, A. (2011). Interpretations of probability. In E. N. Zalta (ed.), The stanford encyclopedia of philosophy. Stanford.
  21. Halpern, J. Y. (2003). Reasoning about uncertainty. MIT Press.Google Scholar
  22. Hart, C., & Titelbaum, M. G. (2015). Intuitive dilation? Thought, 4, 252–262.Google Scholar
  23. Hawthorne, J. (2005). Degree-of-belief and degree-of-support: Why Bayesians need both notions. Mind, 114, 277–320.MathSciNetCrossRefGoogle Scholar
  24. Helton, J. C., Johnson, J., & Oberkampf, W. L. (2004). An exploration of alternative approaches to the representation of uncertainty in model predictions. Reliability Engineering and System Safety, 85, 39–71.CrossRefGoogle Scholar
  25. Helton, J. C., & Oberkampf, W. L. (2004). Alternative representations of epistemic uncertainty. Reliability Engineering and System Safety, 85, 1–10.CrossRefGoogle Scholar
  26. Joyce, J. M. (2010). A defense of imprecise credence in inference and decision. Philosophical Perspectives, 24, 281–323.CrossRefGoogle Scholar
  27. Klir, G. J., & Smith, R. M. (2001). On measuring uncertainty and uncertainty-based information: Recent developments. Annals of Mathematics and Artificial Intelligence, 32, 5–33.MathSciNetCrossRefGoogle Scholar
  28. Koopman, B. O. (1940). The bases of probability. Bulletin of the American Mathematical Society, 46, 763–774.MathSciNetCrossRefGoogle Scholar
  29. Levi, I. (1974). On indeterminate probabilities. Journal of Philosophy, 71, 391–418.CrossRefGoogle Scholar
  30. Levi, I. (1980). The enterprise of knowledge. The MIT Press.Google Scholar
  31. Levi, I. (1986). Hard Choices: Decision making under unresolved conflict. Cambridge University Press.Google Scholar
  32. Morgan, M. G. & Henrion, M. (1990). Uncertainty: A guide to dealing with uncertainty in quantitiative risk and policy analysis. Cambridge University Press.Google Scholar
  33. Oberkampf, W. L., & Helton, J. C. (2004). Evidence theory for engineering applications. In Engineering design reliability handbook (pp. 197–226). CRC Press.Google Scholar
  34. Oberkampf, W. L., Helton, J. C., Joslyn, C. A., Wojtkiewicz, S. F., & Ferson, S. (2004). Challenge problems: Uncertainty in system response given uncertain parameters. Reliability Engineering and System Safety, 85, 11–19.CrossRefGoogle Scholar
  35. Oberkampf, W. L., & Roy, C. J. (2010). Verification and validation in scientific computing. Cambridge University Press.Google Scholar
  36. Pedersen, A. P., & Wheeler, G. (2014). Demystifying dilation. Erkenntnis, 79, 1305–1342.MathSciNetCrossRefGoogle Scholar
  37. Rinard, S. (2013). Against radical credal imprecision. Thought, 2, 157–165.Google Scholar
  38. Rinard, S. (2015). A decision theory for imprecise probabilities. Philosophers’ Imprint, 15, 1–16.Google Scholar
  39. Ruggeri, F., Insua, D. R., & Martín, J. (2005). Robust bayesian analysis. In Handbook of statistics (Vol. 25, pp. 623–667). Elsevier.Google Scholar
  40. Sahlin, N.-E., & Weirich, P. (2014). Unsharp sharpness. Theoria, 80, 100–103.MathSciNetCrossRefGoogle Scholar
  41. Seidenfeld, T. (1983). Decisions with indeterminate probabilities. The Brain and Behavioural Sciences, 6, 259–261.CrossRefGoogle Scholar
  42. Seidenfeld, T. (1988). Decision theory without “independence” or without “ordering”. what’s the difference? Economics and philosophy (pp. 267–290).CrossRefGoogle Scholar
  43. Seidenfeld, T., Kadane, J. B., & Schervish, M. J. (1989). On the shared preferences of two Bayesian decision makers. The Journal of Philosophy, 86, 225–244.MathSciNetCrossRefGoogle Scholar
  44. Seidenfeld, T., & Wasserman, L. (1993). Dilation for sets of probabilities. Annals of Statistics, 21, 1139–1154.MathSciNetCrossRefGoogle Scholar
  45. Smith, C. A. (1961). Consistency in statistical inference and decision. Journal of the Royal Statistical Society Series B (Methodological), 23, 1–37.MathSciNetCrossRefGoogle Scholar
  46. Smith, V. L. & van Boening, M. (2008). Exogenous uncertainty increases the bid-ask spread in the continuous double auction. In Handbook of experimental economics results (vol. 1). Elsevier.Google Scholar
  47. Stainforth, D. A., Allen, M. R., Tredger, E., & Smith, L. A. (2007a). Confidence uncertainty and decision-support relevance in climate models. Philosophical Transactions of the Royal Society, 365, 2145–2161.CrossRefGoogle Scholar
  48. Stainforth, D. A., Downing, T., Washington, R., Lopez, A., & New, M. (2007b). Issues in the interpretation of climate model ensembles to inform decisions. Philosophical Transactions of the Royal Society, 365, 2163–2177.CrossRefGoogle Scholar
  49. Troffaes, M., & de Cooman, G. (2014). Lower previsions. Wiley.Google Scholar
  50. Vallinder, A. (2018). Imprecise bayesianism and global belief inertia. The British Journal for the Philosophy of Science, 69, 1205–1230.MathSciNetCrossRefGoogle Scholar
  51. Walley, P. (1991). Statistical Reasoning with Imprecise Probabilities, volume 42 of Monographs on Statistics and Applied Probability. Chapman and Hall.Google Scholar
  52. White, R. (2010). Evidential symmetry and mushy credence. In T. Szabo Gendler, & J. Hawthorne (Eds.), Oxford studies in epistemology (pp. 161–186). Oxford University Press.Google Scholar
  53. Williamson, T. (1994). Vagueness. Routledge.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.TiLPS, Tilburg UniversityTilburgNetherlands
  2. 2.University of LeedsLeedsUK

Personalised recommendations