How to Use and Derive Stylized Facts for Validating Simulation Models

  • Matthias MeyerEmail author
Part of the Simulation Foundations, Methods and Applications book series (SFMA)


Stylized facts are often evoked in a very casual manner in the context of model validation, a practice that stands in contrast with their popularity and their potential. Given this situation, it is the aim of this chapter to characterize the concept of stylized facts from an epistemological perspective, which includes clarification of interesting ideas behind the concept, development of a definition and discussion of its possible uses for validating simulation models. The latter includes not only output validation but input validation and theory validation as well. Second, the need for a more systematic derivation of stylized facts is addressed. For this purpose, several approaches to establish stylized facts are presented and assessed. In this context, an additional approach is presented, which tries to overcome the shortcomings of current practice. Together, these interrelated aims represent an attempt to strengthen the basis for the validation of simulation models using stylized facts.


Assumptions Methodology Simulation models Stylized facts Validation 



This paper benefits from many discussions with Bernd-Oliver Heine, with whom I developed many ideas presented in this paper. In this respect see also Heine et al. (2007). I also thank Volker Grimm and Uta Berger for very helpful discussions about their related concept of pattern-oriented modeling. Finally, I would like to thank the two reviewers and the editors of this handbook for their constructive and helpful comments.


  1. Aoki, M. (1988). Information, incentives, and bargaining in the Japanese economy. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  2. Babbie, E. (2004). The practice of social research. Belmont: Thomson Wadsworth.Google Scholar
  3. Bogen, J., & Woodward, J. (1988). Saving the phenomena. The Philosophical Review, 97(3), 303–352.CrossRefGoogle Scholar
  4. Boland, L. A. (1994). Stylized facts. In J. Eatwell, M. Milgate, & P. Newman (Eds.), The new palgrave dictionary of economics (Vol. 4, Repr. with corrections ed., pp. 535–536). London: Macmillan Press.Google Scholar
  5. Boland, L. A. (1997). Critical economic methodology. London: Routledge.Google Scholar
  6. Burton, R., & Obel, B. (1995). The validity of computational models in organization science: From model realism to purpose of the model. Computational and Mathematical Organization Theory, 1(1), 57–71.CrossRefGoogle Scholar
  7. Constance, E. H. (2007). Stylized facts, empirical research and theory development in management. Strategic Organization, 5(2), 185–192.CrossRefGoogle Scholar
  8. Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative Finance, 1, 223–236.CrossRefGoogle Scholar
  9. Cooper, H. M. (1987). Literature-searching strategies of integrative research reviewers. Knowledge: Creation, Diffusion, Utilization, 8(2), 373–383.CrossRefGoogle Scholar
  10. Cooper, H. M., & Lindsay, J. J. (1998). Research synthesis and meta-analysis. In L. Bickman & D. J. Rog (Eds.), Handbook of applied social research methods (pp. 315–337). Thousand Oaks: Sage Publications.Google Scholar
  11. Fink, A. (2005). Conducting research literature reviews: From the internet to paper (2nd ed.). Thousand Oaks: Sage Publications.Google Scholar
  12. Frey, B. S., Pommerehne, W. W., Schneider, F., & Gilbert, G. (1984). Consensus and dissension among economists: An empirical inquiry. American Economic Review, 74(5), 986–994.Google Scholar
  13. Friedman, M. (1989). The methodology of positive economics. In M. Friedman (Ed.), Essays in positive economics (15th ed., pp. 3–43). Chicago: University of Chicago Press.Google Scholar
  14. Geroski, P. A. (1995). What do we know about entry? International Journal of Industrial Organization, 13(4), 421–440.CrossRefGoogle Scholar
  15. Gilbert, N. (2008). Agent-based models. Los Angeles, Calif. [u.a.]: Sage Publications.Google Scholar
  16. Glass, G. V., MacGaw, B., & Smith, M. L. (1984). Meta-analysis in social research. Beverly Hills: Sage.Google Scholar
  17. Grimm, V., & Berger, U. (2016). Robustness analysis: Deconstructing computational models for ecological theory and applications. Ecological Modelling, 326, 162–167.CrossRefGoogle Scholar
  18. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W. M., Railsback, S. F., et al. (2005). Pattern-oriented modeling of agent-based complex systems: Lessons from ecology. Science, 310, 987–991.CrossRefGoogle Scholar
  19. Hands, D. W. (2001). Reflection without rules: Economic methodology and contemporary science theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Hausman, D. M. (1995). Why look under the hood? In D. M. Hausman (Ed.), The philosophy of economics: An anthology (2nd ed., Reprint ed., pp. 217–222). Cambridge: Cambridge University Press.Google Scholar
  21. Hayek, F. A. (1964). The theory of complex phenomena. In M. Bunge (Ed.), The critical approach to science and philosophy (pp. 332–349). Free Press of Glencoe.Google Scholar
  22. Heine, B. -O., Meyer, M., & Strangfeld, O. (2005). Stylised facts and the contribution of simulation to the economic analysis of budgeting. Journal of Artificial Societies and Social Simulation, 8(4).Google Scholar
  23. Heine, B.-O., Meyer, M., & Strangfeld, O. (2007). Das Konzept der stilisierten Fakten zur Messung und Bewertung wissenschaftlichen Fortschritts. Die Betriebswirtschaft, 67(5), 583–601.Google Scholar
  24. Houy, C., Fettke, P., & Loos, P. (2015). Stylized facts as an instrument for literature review and cumulative information systems research. CAIS, 37, Article 10.Google Scholar
  25. Kahn, J. A. (1987). Inventories and the volatility of production. American Economic Review, 77(4), 667–679.MathSciNetGoogle Scholar
  26. Kaldor, N. (1968). Capital accumulation and economic growth. In F. A. Lutz & D. C. Hague (Eds.), The theory of capital (Reprint ed., pp. 177–222). London: Macmillan.Google Scholar
  27. Klingert, F., & Meyer, M. (2018). Comparing prediction market mechanisms: An experiment-based and micro validated multi-agent simulation. Journal of Artificial Societies and Social Simulation, 21(1).Google Scholar
  28. Lampenius, N. (2008). Stylized facts of financial markets. Manuscript.Google Scholar
  29. Lamperti, F. (2017). An information theoretic criterion for empirical validation of simulation models. Econometrics and Statistics, 5, 83–106.MathSciNetCrossRefGoogle Scholar
  30. Law, A. M. (2006). Simulation modeling and analysis (4th ed.). Boston: McGraw-Hill.Google Scholar
  31. Lawson, T. (1989). Abstraction, tendencies and stylised facts: A realist approach to economic analysis. Cambridge Journal of Economics, 13(1), 59–78.Google Scholar
  32. Leamer, E. E. (1983). Let’s take the con out of econometrics. American Economic Review, 73(1), 31–43.Google Scholar
  33. Lorscheid, I., Heine, B.-O., & Meyer, M. (2012). Opening the ‘black box’ of simulations: Increased transparency and effective communication through the systematic design of experiments. Computational and Mathematical Organization Theory, 18(1), 22–62. Scholar
  34. Lux, T., & Zwinkels, R. C. (2017). Empirical validation of agent-based models. Handbook of Computational Economics (Vol. 4, pp. 437–488). Elsevier.Google Scholar
  35. Marcet, A., & Nicolini, J. P. (2003). Recurrent hyperinflations and learning. American Economic Review, 93(5), 1476–1498.CrossRefGoogle Scholar
  36. Meyer, M. (2011). Bibliometrics, stylized facts and the way ahead: How to build good social simulation models of science? Journal of Artificial Societies and Social Simulation, 14(4), 4.CrossRefGoogle Scholar
  37. Morgan, S. M. (1998). Models. In J. B. Davis, D. W. Hands, & U. Mäki (Eds.), The handbook of economic methodology (pp. 316–321). Cheltenham: Elgar.Google Scholar
  38. Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Oxford: Blackwell.CrossRefGoogle Scholar
  39. Popper, K. R. (1959). The logic of scientific discovery. New York: Basic Books.zbMATHGoogle Scholar
  40. Richiardi, M., Leombruni, R., Saam, N., & Sonnessa, M. (2006). A common protocol for agent-based social simulation.Google Scholar
  41. Saltelli, A., Tarantola, S., Campolongo, F., & Ratto, M. (2004). Sensitivity analysis in practice: A guide to assessing scientific models. Wiley.Google Scholar
  42. Schwerin, J. (2001). Wachstumsdynamik in Transformationsökonomien: Strukturähnlichkeiten seit der Industriellen Revolution und ihre Bedeutung für Theorie und Politik (Vol. 12). Köln: Böhlau.Google Scholar
  43. Schwerin, J., & Werker, C. (2001). Learning innovation policy based on historical experience. Structural Change and Economic Dynamics, 14(4), 385–404.CrossRefGoogle Scholar
  44. Solow, R. M. (1988). Growth theory: An exposition (Paperback ed.). New York, NY: Oxford University Press.Google Scholar
  45. Stanley, T. D. (2001). Wheat from chaff: Meta-analysis as quantitative literature review. Journal of Economic Perspectives, 15(3), 131–150.CrossRefGoogle Scholar
  46. Troitzsch, K. G. (2008). Stylized fact. In W. A. Darity Jr. (Ed.), International encyclopedia of the social sciences (2nd ed., Vol. 8, pp. 189–190). Detroit: Macmillan Reference.Google Scholar
  47. Whaples, R. (1995). Where is there consensus among American economic historians? The results of a survey on forty propositions. Journal of Economic History, 55(1), 139–154.CrossRefGoogle Scholar
  48. Windrum, P., Fagiolo, G., & Moneta, A. (2007). Empirical validation of agent-based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation, 10(2).Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Hamburg University of TechnologyHamburgGermany

Personalised recommendations