Advertisement

The Method of Manufactured Solutions for Code Verification

  • Patrick J. RoacheEmail author
Chapter
Part of the Simulation Foundations, Methods and Applications book series (SFMA)

Abstract

Verification of codes that numerically approximate solutions of partial differential equations consists in demonstrating that the code is free of coding errors and is capable, given sufficient discretization, of approaching exact mathematical solutions. This requires the evaluation of discretization errors using known benchmark solutions. The best benchmarks are exact analytical solutions with a sufficiently complex solution structure; they need not be physically realistic since verification is a purely mathematical exercise. The Method of Manufactured Solutions (MMS) provides a straightforward and general procedure for generating such solutions. For complex codes, the method utilizes symbolic manipulation, but here it is illustrated with simple examples. When used with systematic grid refinement studies, which are remarkably sensitive, MMS can produce robust code verifications with a strong completion point.

Keywords

Manufactured solutions Simulation Benchmark Verification Turbulence Convergence Symbolic manipulation 

Notes

Acknowledgements

I gratefully acknowledge help from C. Beisbart, L. Eça, P. Moin, W. L. Oberkampf, C. J. Roy, N. Saam, L. Shunn. and especially W. J. Rider.

References

  1. ASME. (2006). ASME V&V 10-2006. Guide for verification and validation in computational solid dynamics.Google Scholar
  2. ASME. (2009). ASME V&V 20-2009. Standard for verification and validation in computational fluid dynamics and heat transfer.Google Scholar
  3. Blackwell, B., Dowding, K., & Modest, M. (2009). Cylindrical geometry verification problem for enclosure radiation. Journal of Thermophysics and Heat Transfer, 23, 711–715.  https://doi.org/10.2514/1.39861.CrossRefGoogle Scholar
  4. Bond, R. B., Ober, C. C., Knupp, P. M., & Bova, S. W. (2007). Manufactured solution for computation fluid dynamics boundary condition verification. AIAA Journal, 45(9), 2224–2236.CrossRefGoogle Scholar
  5. Brady, P. T., Herrmann, M., & Lopez, J. M. (2012). Code verification for finite volume multiphase scalar equations using the method of manufactured solutions. Journal of Computational Physics, 231, 2924–2944.MathSciNetCrossRefGoogle Scholar
  6. Burg, C. O. E., & Murali, V. K. (2004). Efficient code verification using the residual formulation of the method of manufactured solutions. AIAA Paper 2004-2628, 34th AIAA Fluid Dynamics Conference, Portland, Oregon, June, 2004.Google Scholar
  7. Burg, C. O. E., & Murali, V. K. (2006). The residual formulation of the method of manufactured solutions for computationally efficient code verification. International Journal of Computational Fluid Dynamics, 20(7), 2006.CrossRefGoogle Scholar
  8. Bueler, E., Brown, J., & Lingle, C. (2007). Exact solutions to the thermomechanically coupled shallow-ice approximation: effective tools for verification. Journal of Glaciology, 53(182), 499–516.CrossRefGoogle Scholar
  9. Bueler, E., Brown, J. (2009). Shallow shelf approximation as a “sliding law” in a thermomechanically coupled ice sheet model. Journal of Geophysical Research, 114, F03008.  https://doi.org/10.1029/2008jf001179.
  10. Choudhary, A., Roy, C. J., Dietiker, J.-F., Shahnam, M. & Garg, R. (2014). Code verification for multiphase flows using the method of manufactured solutions, FEDSM2014-21608. In Proceedings of the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting (FEDSM). Chicago, IL, August 3–7, 2014.16 M3.Google Scholar
  11. Choudhary, A., Roy, C. J., Luke, E. A., & Veluri, S. P. (2016). Code verification of boundary conditions for compressible and incompressible computational fluid dynamics codes. Computers & Fluids, 126, 153–169.MathSciNetCrossRefGoogle Scholar
  12. Doebling, S. W. (2016). The escape of high explosive products: an exact-solution problem for verification of hydrodynamics codes. Journal of Verification, Validation and Uncertainty Quantification, 1, 041001–1–041001–13.CrossRefGoogle Scholar
  13. Eça, L., & Hoekstra, M. (2007a). Evaluation of numerical error estimation based on grid refinement studies with the method of manufactured solutions. Report D72-42, MARIN, May 2007.Google Scholar
  14. Eça, L., & Hoekstra, M. (2007b). Code verification of unsteady flow solvers with the method of manufactured solutions. Paper No. ISOPE-2007-565, International Society of Offshore and Polar Engineers.Google Scholar
  15. Eça, L., & Hoekstra, M. (2009). Evaluation of numerical error estimation based on grid refinement studies with the method of manufactured solutions. Computers and Fluids,  https://doi.org/10.1016/j.compfluid.2009.01.003.CrossRefGoogle Scholar
  16. Eça, L., Hoekstra, M., Hay, A., & Pelletier, D. (2007a). A manufactured solution for a two-dimensional steady wall-bounded incompressible turbulent flow. International Journal of Computational Fluid Dynamics, 21, 175–188.CrossRefGoogle Scholar
  17. Eça, L., Hoekstra, M., Hay, A., & Pelletier, D. (2007b). On the construction of manufactured solutions for one and two-equation eddy-viscosity models. International Journal for Numerical Methods in Fluids, 54, 119–154.CrossRefGoogle Scholar
  18. Eça, L., Hoekstra, M., Roache, P. J., & Coleman, H. (2009). Code verification, solution verification and validation: An overview of the 3rd Lisbon Workshop. AIAA Paper No. 2009-3647, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas, June 2009.Google Scholar
  19. Fickett, W., & Rivard, C. (1974). Test problems for hydrocodes. Los Alamos, New Mexico:Los Alamos Scientific Laboratory, Report No. LA-5479.Google Scholar
  20. Grier, B., Alyanak, E., White, M., Camberos, J., & Figliola, R. (2014). Numerical integration techniques for discontinuous manufactured solutions. Journal of Computational Physics, 278, 193–203.MathSciNetCrossRefGoogle Scholar
  21. Grier, B., & Figliola, R. (2015). Discontinuous solutions using the method of manufactured solutions on finite volume solvers. AIAA Journal, 53, 2369–2378.CrossRefGoogle Scholar
  22. Grismer, M. J., & Powers, J. M. (1996). Numerical predictions of oblique detonation stability boundaries. Shock Waves, 6, 147–156.CrossRefGoogle Scholar
  23. IEEE. (1991). IEEE standard glossary of software engineering terminology, IEEE Std 610.12-1990, New York, IEEE.Google Scholar
  24. Knupp, P., & Salari, K. (2003). Verification of computer codes in computational science and engineering. Boca Raon, FL: CRC Press.zbMATHGoogle Scholar
  25. Malaya, N., Estacio-Hiroms, K. C., Stogner, R. H., Schulz, K. W., Bauman, P. T., & Carey, G. F. (2013). MASA: A library for verification using manufactured and analytical solutions. Engineering with Computers, 29, 487–496.CrossRefGoogle Scholar
  26. Murali, V., Burg, C. O. E. (2002). Verification of 2D navier-stokes codes by the method of manufactured solutions. AIAA Paper 2002-3109, 32nd AIAA Fluid Dynamics Conference, St. Louis, June, 2002.Google Scholar
  27. Oberkampf, W. L., & Trucano, T. G. (2002). Verification and validation in computational fluid dynamics. AIAA Progress in Aerospace Sciences.Google Scholar
  28. Oberkampf, W. L., & Roy, C. J. (2010). Verification and Validation in Scientific Computing. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
  29. Pautz, S. D. (2001). Verification of transport codes by the method of manufactured solutions: The ATTILA experience. In Proceedings of the ANS International Meeting on Mathematical Methods for Nuclear Applications, M&C 2001. Salt Lake City, Utah, Sept 2001.Google Scholar
  30. Pelletier, D., & Roache, P. J. (2006). Verification and validation of computational heat transfer. In W. J. Minkowycz, E. M. Sparrow, & J. Y. Murthy (Eds.), Handbook of Numerical Heat Transfer (2nd ed.). New York:Wiley.Google Scholar
  31. Pelletier, D., Turgeon, E., & Tremblay, D. (2004). Verification and validation of impinging round jet simulations using an adaptive FEM. International Journal for Numerical Methods in Fluids, 44, 737–763.CrossRefGoogle Scholar
  32. Polya, G. (1957). How to solve it, a new aspect of mathematical method. Princeton, NJ: Princeton University Press.zbMATHGoogle Scholar
  33. Rider, W. J. (2018). Personal communication 5/5/2018.Google Scholar
  34. Roache, P. J. (1993). A method for uniform reporting of grid refinement studies, ASME FED-Vol. 158. In I. Celik, C. J. Chen, P. J. Roache, & G. Scheurer (Eds.), Quantification of uncertainty in computational fluid dynamics. ASME Fluids Engineering Division Summer Meeting, Washington, DC, 20–24 June 1993, pp. 109–120.Google Scholar
  35. Roache, P. J. (1998a). Verification and validation in computational science and engineering. Albuquerque, NM: Hermosa Publishers.Google Scholar
  36. Roache, P. J. (1998b). Fundamentals of computational fluid dynamics. Albuquerque, NM: Hermosa Publishers.Google Scholar
  37. Roache, P. J. (2002). Code verification by the method of manufactured solutions. ASME Journal of Fluids Engineering, 114(1), 4–10.CrossRefGoogle Scholar
  38. Roache, P. J. (2004). Building PDE codes to be verifiable and validatable. Computing in science and engineering. Special Issue on Verification and Validation, September/October 2004, 30–38.CrossRefGoogle Scholar
  39. Roache, P. J. (2009). Fundamentals of verification and validation, Hermosa Publishers, Albuquerque, NM, Ch. 3 and Appendix C.Google Scholar
  40. Roache, P. J. (2012). A defense of computational physics. Albuquerque, NM: Hermosa Publishers.Google Scholar
  41. Roache, P. J. (2016). Verification and validation in fluids engineering: some current issues. ASME Journal of Fluids Engineering. FE-16-1206.  https://doi.org/10.1115/1.4033979.CrossRefGoogle Scholar
  42. Roache, P. J., & Steinberg, S. (1984). Symbolic manipulation and computational fluid dynamics. AIAA Journal, 22(10), 1390–1394.MathSciNetCrossRefGoogle Scholar
  43. Roy, C. J. (2001). Grid convergence error analysis for mixed-order numerical schemes. AIAA Paper 2001–2606, June 2001 (Anaheim).Google Scholar
  44. Roy, C. J. (2005). Review of code and solution verification procedures for computational simulation. Journal of Computational Physics, 205(1), 131–136.CrossRefGoogle Scholar
  45. Roy, C. J. (2015). Code verification: past, present and future, keynote lecture. In ASME V&V Symposium, La Vegas, NV, 13 May 2015.Google Scholar
  46. Roy, C. J., McWherter-Payne, M. A., & Oberkampf, W. L. (2000). Verification and validation for laminar hypersonic flowfields, AIAA 2000-2550, June 2000 (Denver).Google Scholar
  47. Salari, K. & Knupp, P. (2000). Code verification by the method of manufactured solutions, SAND2000-1444, Sandia National Laboratories, Albuquerque, NM 87185, June 2000.Google Scholar
  48. Shunn, L., Ham, F., & Moin, P. (2012a). Verification of variable-density flow solvers using manufactured solutions. Journal of Computational Physics, 231(9), 3801–3827.MathSciNetCrossRefGoogle Scholar
  49. Shunn, L., Ham, F., & Moin, P. (2012b). Verification of variable-density flow solvers using manufactured solutions. Journal of Computational Physics, 231(9), 3801–3827.MathSciNetCrossRefGoogle Scholar
  50. Sinclair, G. B., Beisheim, J. R., & Sezer, S. (2006). Practical convergence-divergence checks for stresses from FEA. In Proceedings of the 2006 international ANSYS users conference and exposition, 2–4 May 2006, Pittsburgh, PA.Google Scholar
  51. Steinberg, S., & Roache, P. J. (1985). Symbolic manipulation and computational fluid dynamics. Journal of Computational Physics, 57(2), 251–284.MathSciNetCrossRefGoogle Scholar
  52. Steinberg, S., & Roache, P. J. (1986a). Variational grid generation. Numerical Methods for Partial Differential Equations, 2, 71–96.MathSciNetCrossRefGoogle Scholar
  53. Steinberg, S., & Roache, P. J. (1986b). Grid generation: A variational and symbolic-computation approach. In Proceedings numerical grid generation in fluid dynamics conference, July 1986, Landshut, W. Germany.Google Scholar
  54. Steinberg, S., & Roache, P. J. (1992). Variational curve and surface grid generation. Journal of Computational Physics, 100(1), 163–178.MathSciNetCrossRefGoogle Scholar
  55. Wang, S. S. Y., Jia, Y., Roache, P. J., Smith, P. E., & Schmalz, R. A. Jr., (Eds.). (2009). Verification and validation of 3D free-surface flow model. ASCE/EWRI Task Committee.Google Scholar
  56. Woods, C. N., & Starkey, R. P. (2015). Verification of fluid-dynamic codes in the presence of shocks and other discontinuities. Journal of Computational Physics, 294, 312–328.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.ConsultantSocorroUSA

Personalised recommendations