Advertisement

“Don’t Turn Off the Lights”: Modelling of Human Light Interaction in Indoor Environments

  • Irtiza Hasan
  • Theodore Tsesmelis
  • Alessio Del Bue
  • Fabio Galasso
  • Marco Cristani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10590)

Abstract

Human activity recognition and forecasting can be used as a primary cue for scene understanding. Acquiring details from the scene has vast applications in different fields such as computer vision, robotics and more recently smart lighting. This work brings together advanced research in computer vision and the most modern technology in lighting. The goal of this work is to eliminate the need for any switches for lighting, which means that each person in the office perceives the entire office as all lit, while lights, which are not visible by the person, are switched off by the system. This can be achieved by combining lighting with presence detection and smart light control.

Keywords

Scene understanding Activity forecasting Activity recognition Photometry 

References

  1. 1.
    Adams, L., Zuckerman, D.: The effect of lighting conditions on personal space requirements. J. Gen. Psychol. 118(4), 335–340 (1991)CrossRefGoogle Scholar
  2. 2.
    Ba, S.O., Odobez, J.M.: A probabilistic framework for joint head tracking and pose estimation. In: IEEE International Conference on Pattern Recognition (ICPR) (2004)Google Scholar
  3. 3.
    Bazzani, L., Cristani, M., Tosato, D., Farenzena, M., Paggetti, G., Menegaz, G., Murino, V.: Social interactions by visual focus of attention in a three-dimensional environment. Expert Syst. 30(2), 115–127 (2013)CrossRefGoogle Scholar
  4. 4.
    Benfold, B., Reid, I.: Guiding visual surveillance by tracking human attention. In: British Machine Vision Conference (BMVC), pp. 1–11 (2009)Google Scholar
  5. 5.
    Carr, S.J., Dabbs Jr., J.M.: The effects of lighting, distance and intimacy of topic on verbal and visual behavior. Sociometry, pp. 592–600 (1974)Google Scholar
  6. 6.
    Cristani, M., Bazzani, L., Paggetti, G., Fossati, A., Tosato, D., Del Bue, A., Menegaz, G., Murino, V.: Social interaction discovery by statistical analysis of f-formations. In: British Machine Vision Conference (BMVC), pp. 23.1–23.12 (2011)Google Scholar
  7. 7.
    Flynn, J.E., Hendrick, C., Spencer, T., Martyniuk, O.: A guide to methodology procedures for measuring subjective impressions in lighting. J. Illuminating Eng. Soc. 8(2), 95–110 (1979)CrossRefGoogle Scholar
  8. 8.
    Galasiu, A.D., Veitch, J.A.: Occupant preferences and satisfaction with the luminous environment and control systems in daylit offices: a literature review. Energy Build. 38(7), 728–742 (2006)CrossRefGoogle Scholar
  9. 9.
    Gifford, R.: Light, decor, arousal, comfort and communication. J. Environ. Psychol. 8(3), 177–189 (1988)CrossRefGoogle Scholar
  10. 10.
    Gil-Castineira, F., Costa-Montenegro, E., Gonzalez-Castano, F., López-Bravo, C., Ojala, T., Bose, R.: Experiences inside the ubiquitous oulu smart city. Computer 44(6), 48–55 (2011)CrossRefGoogle Scholar
  11. 11.
    Goffman, E.: Behaviour in Public Places: Notes on the Social Order of Gatherings. Free Press, Glencoe (1963)Google Scholar
  12. 12.
    Gourier, N., Maisonnasse, J., Hall, D., Crowley, J.L.: Head pose estimation on low resolution images. In: Stiefelhagen, R., Garofolo, J. (eds.) CLEAR 2006. LNCS, vol. 4122, pp. 270–280. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-69568-4_24 CrossRefGoogle Scholar
  13. 13.
    Lee, D., Yang, M.H., Oh, S.: Fast and accurate head pose estimation via random projection forests. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1958–1966 (2015)Google Scholar
  14. 14.
    Magielse, R., Hengeveld, B.J., Frens, J.W.: Designing a light controller for a multi-user lighting environment (2013)Google Scholar
  15. 15.
    Poulsen, E.S., Morrison, A., Andersen, H.J., Jensen, O.B.: Responsive lighting: the city becomes alive. In: Proceedings of the 15th International Conference on Human-Computer Interaction with Mobile Devices and Services, pp. 217–226. ACM (2013)Google Scholar
  16. 16.
    Robertson, N., Reid, I.: Estimating gaze direction from low-resolution faces in video. In: European Conference on Computer Vision (ECCV) (2006)Google Scholar
  17. 17.
    Robertson, N.M., Reid, I.D.: Automatic reasoning about causal events in surveillance video. EURASIP J. Image Video Process. 1, 1–19 (2011)CrossRefGoogle Scholar
  18. 18.
    Smith, K., Ba, S.O., Odobez, J.M., Gatica-Perez, D.: Tracking the visual focus of attention for a varying number of wandering people. IEEE Trans. Pattern Anal. Mach. Intell. 30(7), 1212–1229 (2008)CrossRefGoogle Scholar
  19. 19.
    Smolders, K.C., de Kort, Y.A., Tenner, A.D., Kaiser, F.G.: Need for recovery in offices: behavior-based assessment. J. Environ. Psychol. 32(2), 126–134 (2012)CrossRefGoogle Scholar
  20. 20.
    Stiefelhagen, R., Finke, M., Yang, J., Waibel, A.: From gaze to focus of attention. In: Visual Information and Information Systems (1999)Google Scholar
  21. 21.
    Taylor, L.H., Socov, E.W.: The movement of people toward lights. J. Illuminating Eng. Soc. 3(3), 237–241 (1974)CrossRefGoogle Scholar
  22. 22.
    Toshev, A., Szegedy, C.: Deeppose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1653–1660 (2014)Google Scholar
  23. 23.
    Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)CrossRefGoogle Scholar
  24. 24.
    Voit, M., Nickel, K., Stiefelhagen, R.: A Bayesian approach for multi-view head pose estimation. In: 2006 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, pp. 31–34. IEEE (2006)Google Scholar
  25. 25.
    Xu, A.J., Labroo, A.: Incandescent affect: turning on the hot emotional system with bright light. ACR North American Advances (2013)Google Scholar
  26. 26.
    Zhang, L., Hung, H.: Beyond f-formations: determining social involvement in free standing conversing groups from static images. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Irtiza Hasan
    • 1
  • Theodore Tsesmelis
    • 2
  • Alessio Del Bue
    • 2
  • Fabio Galasso
    • 3
  • Marco Cristani
    • 1
  1. 1.University of VeronaVeronaItaly
  2. 2.Istituto Italiano di TecnologiaGenoaItaly
  3. 3.Corporate Innovation OSRAM GmbHHamburgGermany

Personalised recommendations