Advertisement

Towards a Classification of Non-interactive Computational Assumptions in Cyclic Groups

  • Essam Ghadafi
  • Jens Groth
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10625)

Abstract

We study non-interactive computational intractability assumptions in prime-order cyclic groups. We focus on the broad class of computational assumptions which we call target assumptions where the adversary’s goal is to compute concrete group elements.

Our analysis identifies two families of intractability assumptions, the q-Generalized Diffie-Hellman Exponent (q-GDHE) assumptions and the q-Simple Fractional (q-SFrac) assumptions (a natural generalization of the q-SDH assumption), that imply all other target assumptions. These two assumptions therefore serve as Uber assumptions that can underpin all the target assumptions where the adversary has to compute specific group elements. We also study the internal hierarchy among members of these two assumption families. We provide heuristic evidence that both families are necessary to cover the full class of target assumptions. We also prove that having (polynomially many times) access to an adversarial 1-GDHE oracle, which returns correct solutions with non-negligible probability, entails one to solve any instance of the Computational Diffie-Hellman (CDH) assumption. This proves equivalence between the CDH and 1-GDHE assumptions. The latter result is of independent interest. We generalize our results to the bilinear group setting. For the base groups, our results translate nicely and a similar structure of non-interactive computational assumptions emerges. We also identify Uber assumptions in the target group but this requires replacing the q-GDHE assumption with a more complicated assumption, which we call the bilinar gap assumption.

Our analysis can assist both cryptanalysts and cryptographers. For cryptanalysts, we propose the q-GDHE and the q-SDH assumptions are the most natural and important targets for cryptanalysis in prime-order groups. For cryptographers, we believe our classification can aid the choice of assumptions underpinning cryptographic schemes and be used as a guide to minimize the overall attack surface that different assumptions expose.

References

  1. 1.
    Abdalla, M., Benhamouda, F., Passelègue, A.: An algebraic framework for pseudorandom functions and applications to related-key security. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015. LNCS, vol. 9215, pp. 388–409. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-47989-6_19 CrossRefGoogle Scholar
  2. 2.
    Ambrona, M., Barthe, G., Schmidt, B.: Automated unbounded analysis of cryptographic constructions in the generic group model. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 822–851. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_29 CrossRefGoogle Scholar
  3. 3.
    Bao, F., Deng, R.H., Zhu, H.F.: Variations of Diffie-Hellman problem. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 301–312. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-39927-8_28 CrossRefGoogle Scholar
  4. 4.
    Barthe, G., Fagerholm, E., Fiore, D., Mitchell, J., Scedrov, A., Schmidt, B.: Automated analysis of cryptographic assumptions in generic group models. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 95–112. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44371-2_6 CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-28628-8_17 CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Waters, B., Yilek, S.: Identity-based encryption secure against selective opening attack. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 235–252. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_15 CrossRefGoogle Scholar
  7. 7.
    Boer, B.: Diffie-Hellman is as strong as discrete log for certain primes. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 530–539. Springer, New York (1990).  https://doi.org/10.1007/0-387-34799-2_38 Google Scholar
  8. 8.
    Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Crypt. 21(2), 149–177 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_26 CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast encryption with short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 258–275. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_16 CrossRefGoogle Scholar
  11. 11.
    Boyen, X.: The Uber-assumption family. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008. LNCS, vol. 5209, pp. 39–56. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85538-5_3 CrossRefGoogle Scholar
  12. 12.
    Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71677-8_1 CrossRefGoogle Scholar
  13. 13.
    Bresson, E., Chevassut, O., Pointcheval, D.: The group Diffie-Hellman problems. In: Nyberg, K., Heys, H. (eds.) SAC 2002. LNCS, vol. 2595, pp. 325–338. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-36492-7_21 CrossRefGoogle Scholar
  14. 14.
    Bresson, E., Lakhnech, Y., Mazaré, L., Warinschi, B.: A generalization of DDH with applications to protocol analysis and computational soundness. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 482–499. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_27 CrossRefGoogle Scholar
  15. 15.
    Chase, M., Maller, M., Meiklejohn, S.: Déjà Q all over again: tighter and broader reductions of q-type assumptions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 655–681. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53890-6_22 CrossRefGoogle Scholar
  16. 16.
    Chase, M., Meiklejohn, S.: Déjà Q: using dual systems to revisit q-type assumptions. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 622–639. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_34 CrossRefGoogle Scholar
  17. 17.
    Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg (2006).  https://doi.org/10.1007/11761679_1 CrossRefGoogle Scholar
  18. 18.
    Dent, A.W.: Adapting the weaknesses of the random oracle model to the generic group model. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 100–109. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-36178-2_6 CrossRefGoogle Scholar
  19. 19.
    Escala, A., Herold, G., Kiltz, E., Ràfols, C., Villar, J.: An algebraic framework for Diffie-Hellman assumptions. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 129–147. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_8 CrossRefGoogle Scholar
  20. 20.
    Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. Cryptology ePrint Archive, Report 2014/944 (2014)Google Scholar
  21. 21.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Appl. Math. 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_37 CrossRefGoogle Scholar
  23. 23.
    Ghadafi, E., Groth, J.: Towards a classification of non-interactive computational assumptions in cyclic groups. Cryptology ePrint Archive, Report 2017/343 (2017). http://eprint.iacr.org/2017/343
  24. 24.
    Goldwasser, S., Tauman Kalai, Y.: Cryptographic assumptions: a position paper. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 505–522. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49096-9_21 CrossRefGoogle Scholar
  25. 25.
    Jager, T., Schwenk, J.: On the analysis of cryptographic assumptions in the generic ring model. J. Crypt. 26(2), 225–245 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Joux, A., Rojat, A.: Security ranking among assumptions within the Uber Assumption framework. In: Desmedt, Y. (ed.) ISC 2013. LNCS, vol. 7807, pp. 391–406. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-27659-5_28 CrossRefGoogle Scholar
  27. 27.
    Kiltz, E.: A tool box of cryptographic functions related to the Diffie-Hellman function. In: Rangan, C.P., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247, pp. 339–349. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45311-3_32 CrossRefGoogle Scholar
  28. 28.
    Koblitz, N., Menezes, A.: Another look at generic groups. Adv. Math. Commun. 1(1), 13–28 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Konoma, C., Mambo, M., Shizuya, H.: Complexity analysis of the cryptographic primitive problems through square-root exponent. IEICE Trans. E87–A(5), 1083–1091 (2004)Google Scholar
  30. 30.
    Maurer, U.: Abstract models of computation in cryptography. In: Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 1–12. Springer, Heidelberg (2005).  https://doi.org/10.1007/11586821_1 CrossRefGoogle Scholar
  31. 31.
    Maurer, U.M.: Towards the equivalence of breaking the Diffie-Hellman protocol and computing discrete logarithms. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 271–281. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48658-5_26 Google Scholar
  32. 32.
    Maurer, U.M., Wolf, S.: Diffie-Hellman oracles. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 268–282. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-68697-5_21 Google Scholar
  33. 33.
    Mitsunari, S., Sakai, R., Kasahara, M.: A new traitor tracing. IEICE Trans. E85–A(2), 481–484 (2002)Google Scholar
  34. 34.
    Morillo, P., Ràfols, C., Villar, J.L.: The kernel matrix Diffie-Hellman assumption. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 729–758. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53887-6_27 CrossRefGoogle Scholar
  35. 35.
    Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_6 CrossRefGoogle Scholar
  36. 36.
    Nechaev, V.I.: Complexity of a determinate algorithm for the discrete logarithm. Math. Zametki 55(2), 91–101 (1994)zbMATHGoogle Scholar
  37. 37.
    Roh, D., Hahn, S.G.: The square root Diffie-Hellman problem. Des. Codes Crypt. 62(2), 179–187 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sadeghi, A.-R., Steiner, M.: Assumptions related to discrete logarithms: why subtleties make a real difference. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 244–261. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-44987-6_16 CrossRefGoogle Scholar
  39. 39.
    Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg (1997).  https://doi.org/10.1007/3-540-69053-0_18 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.University of the West of EnglandBristolUK
  2. 2.University College LondonLondonUK

Personalised recommendations