Advertisement

More Efficient Universal Circuit Constructions

  • Daniel Günther
  • Ágnes KissEmail author
  • Thomas Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10625)

Abstract

A universal circuit (UC) can be programmed to simulate any circuit up to a given size n by specifying its program bits. UCs have several applications, including private function evaluation (PFE). The asymptotical lower bound for the size of a UC is proven to be \(\varOmega (n\log n)\). In fact, Valiant (STOC’76) provided two theoretical UC constructions using so-called 2-way and 4-way constructions, with sizes\(~5n\log _2n\) and \(4.75n\log _2n\), respectively. The 2-way UC has recently been brought into practice in concurrent and independent results by Kiss and Schneider (EUROCRYPT’16) and Lipmaa et al. (Eprint 2016/017). Moreover, the latter work generalized Valiant’s construction to any k-way UC.

In this paper, we revisit Valiant’s UC constructions and the recent results, and provide a modular and generic embedding algorithm for any k-way UC. Furthermore, we discuss the possibility for a more efficient UC based on a 3-way recursive strategy. We show with a counterexample that even though it is a promising approach, the 3-way UC does not yield an asymptotically better result than the 4-way UC. We propose a hybrid approach that combines the 2-way with the 4-way UC in order to minimize the size of the resulting UC. We elaborate on the concrete size of all discussed UC constructions and show that our hybrid UC yields on average 3.65% improvement in size over the 2-way UC. We implement the 4-way UC in a modular manner based on our proposed embedding algorithm, and show that our methods for programming the UC can be generalized for any k-way construction.

Keywords

Universal circuit Private function evaluation Function hiding 

Notes

Acknowledgements

This work has been co-funded by the German Federal Ministry of Education and Research (BMBF) and the Hessen State Ministry for Higher Education, Research and the Arts (HMWK) within CRISP and by the DFG as part of project E3 within CROSSING. We thank the reviewers of ASIACRYPT’17 for their helpful comments.

References

  1. [AMPR14]
    Afshar, A., Mohassel, P., Pinkas, B., Riva, B.: Non-interactive secure computation based on cut-and-choose. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 387–404. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-55220-5_22 CrossRefGoogle Scholar
  2. [Att14]
    Attrapadung, N.: Fully secure and succinct attribute based encryption for circuits from multi-linear maps. Cryptology ePrint Archive, Report 2014/772 (2014). http://ia.cr/2014/772
  3. [BBKL17]
    Bicer, O., Bingol, M.A., Kiraz, M.S., Levi, A.: Towards practical PFE: an efficient 2-party private function evaluation protocol based on half gates. Cryptology ePrint Archive, Report 2017/415 (2017). http://ia.cr/2017/415
  4. [BD02]
    Beauquier, B., Darrot, É.: On arbitrary size Waksman networks and their vulnerability. Parallel Proces. Lett. 12(3–4), 287–296 (2002)MathSciNetCrossRefGoogle Scholar
  5. [BFK+09]
    Barni, M., Failla, P., Kolesnikov, V., Lazzeretti, R., Sadeghi, A.-R., Schneider, T.: Secure evaluation of private linear branching programs with medical applications. In: Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 424–439. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04444-1_26 CrossRefGoogle Scholar
  6. [BNP08]
    Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS 2008, pp. 257–266. ACM (2008)Google Scholar
  7. [BOKP15]
    Banescu, S., Ochoa, M., Kunze, N., Pretschner, A.: Idea: benchmarking indistinguishability obfuscation – a candidate implementation. In: Piessens, F., Caballero, J., Bielova, N. (eds.) ESSoS 2015. LNCS, vol. 8978, pp. 149–156. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15618-7_12 Google Scholar
  8. [BPSW07]
    Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote diagnostics. In: CCS 2007, pp. 498–507. ACM (2007)Google Scholar
  9. [DSZ15]
    Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-protocol secure two-party computation. In: NDSS 2015. The Internet Society (2015). Code: http://encrypto.de/code/ABY
  10. [FAZ05]
    Frikken, K.B., Atallah, M.J., Zhang, C.: Privacy-preserving credit checking. In: Electronic Commerce (EC 2005), pp. 147–154. ACM (2005)Google Scholar
  11. [FGP14]
    Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted data. In: CCS 2015, pp. 844–855. ACM (2014)Google Scholar
  12. [FVK+15]
    Fisch, B., Vo, B., Krell, F., Kumarasubramanian, A., Kolesnikov, V., Malkin, T., Bellovin, S.M.: Malicious-client security in blind seer: a scalable private DBMS. In: IEEE S&P 2015, pp. 395–410. IEEE (2015)Google Scholar
  13. [GGH+13a]
    Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS 2013, pp. 40–49. IEEE (2013)Google Scholar
  14. [GGH+13b]
    Garg, S., Gentry, C., Halevi, S., Sahai, A., Waters, B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 479–499. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40084-1_27 CrossRefGoogle Scholar
  15. [GHV10]
    Gentry, C., Halevi, S., Vaikuntanathan, V.: i-hop homomorphic encryption and rerandomizable Yao circuits. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 155–172. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-14623-7_9 CrossRefGoogle Scholar
  16. [GKS17]
    Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit constructions. Cryptology ePrint Archive, Report 2017/798 (2017). http://ia.cr/2017/798
  17. [HKK+14]
    Huang, Y., Katz, J., Kolesnikov, V., Kumaresan, R., Malozemoff, A.J.: Amortizing garbled circuits. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 458–475. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_26 CrossRefGoogle Scholar
  18. [Kő31]
    Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)Google Scholar
  19. [KM11]
    Katz, J., Malka, L.: Constant-round private function evaluation with linear complexity. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 556–571. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-25385-0_30 CrossRefGoogle Scholar
  20. [KR11]
    Kamara, S., Raykova, M.: Secure outsourced computation in a multi-tenant cloud. In: IBM Workshop on Cryptography and Security in Clouds (2011)Google Scholar
  21. [KS08a]
    Kolesnikov, V., Schneider, T.: Improved garbled circuit: free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 486–498. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-70583-3_40 CrossRefGoogle Scholar
  22. [KS08b]
    Kolesnikov, V., Schneider, T.: A practical universal circuit construction and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008. LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-85230-8_7 CrossRefGoogle Scholar
  23. [KS16]
    Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49890-3_27 CrossRefGoogle Scholar
  24. [LMS16]
    Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: improvements, implementation, and applications. Cryptology ePrint Archive, Report 2016/017 (2016). http://ia.cr/2016/017
  25. [LP09]
    Lovász, L., Plummer, M.D.: Matching Theory. AMS Chelsea Publishing Series. American Mathematical Society, Providence (2009)CrossRefzbMATHGoogle Scholar
  26. [LR15]
    Lindell, Y., Riva, B.: Blazing fast 2PC in the offline/online setting with security for malicious adversaries. In: CCS 2015, pp. 579–590. ACM (2015)Google Scholar
  27. [MNPS04]
    Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - secure two-party computation system. In: USENIX Security 2004, pp. 287–302. USENIX (2004)Google Scholar
  28. [MS13]
    Mohassel, P., Sadeghian, S.: How to hide circuits in MPC an efficient framework for private function evaluation. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 557–574. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38348-9_33 CrossRefGoogle Scholar
  29. [MSS14]
    Mohassel, P., Sadeghian, S., Smart, N.P.: Actively secure private function evaluation. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 486–505. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45608-8_26 Google Scholar
  30. [NPS99]
    Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism design. In: ACM Conference on Electronic Commerce (EC 1999), pp. 129–139. ACM (1999)Google Scholar
  31. [NSMS14]
    Niksefat, S., Sadeghiyan, B., Mohassel, P., Sadeghian, S.S.: ZIDS: a privacy-preserving intrusion detection system using secure two-party computation protocols. Comput. J. 57(4), 494–509 (2014)CrossRefGoogle Scholar
  32. [OI05]
    Ostrovsky, R., Skeith, W.E.: Private searching on streaming data. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 223–240. Springer, Heidelberg (2005).  https://doi.org/10.1007/11535218_14 CrossRefGoogle Scholar
  33. [PKV+14]
    Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Geol Choi, S., George, W., Keromytis, A.D., Bellovin, S.: Blind seer: a scalable private DBMS. In: IEEE S&P 2014, pp. 359–374. IEEE (2014)Google Scholar
  34. [Sch08]
    Schneider, S.: Practical secure function evaluation. Master’s thesis, University Erlangen-Nürnberg, Germany, February 2008Google Scholar
  35. [Sha49]
    Shannon, C.: The synthesis of two-terminal switching circuits. Bell Labs Tech. J. 28(1), 59–98 (1949)MathSciNetCrossRefGoogle Scholar
  36. [SS08]
    Sadeghi, A.-R., Schneider, T.: Generalized universal circuits for secure evaluation of private functions with application to data classification. In: Lee, P.J., Cheon, J.H. (eds.) ICISC 2008. LNCS, vol. 5461, pp. 336–353. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-00730-9_21 CrossRefGoogle Scholar
  37. [TS15]
    Tillich, S., Smart, N.: Circuits of basic functions suitable for MPC and FHE (2015). https://www.cs.bris.ac.uk/Research/CryptographySecurity/MPC/
  38. [Val76]
    Valiant, L.G.: Universal circuits (preliminary report). In: STOC 1976, pp. 196–203. ACM (1976)Google Scholar
  39. [Wak68]
    Waksman, A.: A permutation network. J. ACM 15(1), 159–163 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  40. [Weg87]
    Wegener, I.: The complexity of Boolean functions. Wiley-Teubner (1987)Google Scholar
  41. [Yao86]
    Yao, A.C.-C.: How to generate and exchange secrets (extended abstract). In: FOCS 1986, pp. 162–167. IEEE (1986)Google Scholar
  42. [Zim15]
    Zimmerman, J.: How to obfuscate programs directly. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 439–467. Springer, Heidelberg (2015).  https://doi.org/10.1007/978-3-662-46803-6_15 Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Daniel Günther
    • 1
  • Ágnes Kiss
    • 1
    Email author
  • Thomas Schneider
    • 1
  1. 1.TU DarmstadtDarmstadtGermany

Personalised recommendations