Advertisement

Instantaneous Decentralized Poker

  • Iddo BentovEmail author
  • Ranjit Kumaresan
  • Andrew Miller
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10625)

Abstract

We present efficient protocols for amortized secure multiparty computation with penalties and secure cash distribution, of which poker is a prime example. Our protocols have an initial phase where the parties interact with a cryptocurrency network, that then enables them to interact only among themselves over the course of playing many poker games in which money changes hands.

The high efficiency of our protocols is achieved by harnessing the power of stateful contracts. Compared to the limited expressive power of Bitcoin scripts, stateful contracts enable richer forms of interaction between standard secure computation and a cryptocurrency.

We formalize the stateful contract model and the security notions that our protocols accomplish, and provide proofs in the simulation paradigm. Moreover, we provide a reference implementation in Ethereum/Solidity for the stateful contracts that our protocols are based on.

We also adapt our off-chain cash distribution protocols to the special case of stateful duplex micropayment channels, which are of independent interest. In comparison to Bitcoin based payment channels, our duplex channel implementation is more efficient and has additional features.

References

  1. 1.
  2. 2.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Fair two-party computations via the bitcoin deposits. In: First Bitcoin Workshop, FC (2014)Google Scholar
  3. 3.
    Andrychowicz, M., Dziembowski, S., Malinowski, D., Mazurek, L.: Secure multiparty computations on bitcoin. In: IEEE Security and Privacy (2014)Google Scholar
  4. 4.
    Asokan, N., Shoup, V., Waidner, M.: Optimistic protocols for fair exchange. In: ACM CCS (1997)Google Scholar
  5. 5.
    Barber, S., Boyen, X., Shi, E., Uzun, E.: Bitter to better — how to make bitcoin a better currency. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol. 7397, pp. 399–414. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-32946-3_29
  6. 6.
    Barnett, A., Smart, N.P.: Mental poker revisited. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 370–383. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-40974-8_29 CrossRefGoogle Scholar
  7. 7.
    Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 263–280. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-29011-4_17 CrossRefGoogle Scholar
  8. 8.
    Bentov, I., Kumaresan, R.: How to use bitcoin to design fair protocols. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 421–439. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_24 CrossRefGoogle Scholar
  9. 9.
    Bentov, I., Kumaresan, R., Miller, A.: Instantaneous decentralized poker. Technical report available at https://arxiv.org/abs/1701.06726 (2017)
  10. 10.
  11. 11.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS (2001)Google Scholar
  12. 12.
    Castellà-Roca, J., Domingo-Ferrer, J., Riera, A., Borrell, J.: Practical mental poker without a TTP based on homomorphic encryption. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 280–294. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-24582-7_21 CrossRefGoogle Scholar
  13. 13.
    Cleve, R.: Limits on the security of coin flips when half the processors are faulty (extended abstract). In: STOC, pp. 364–369 (1986)Google Scholar
  14. 14.
    Coleman, J.: State channels. http://www.jeffcoleman.ca/state-channels/
  15. 15.
    Coppersmith, D.: Cheating at mental poker. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 104–107. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39799-X_10 CrossRefGoogle Scholar
  16. 16.
    Crépeau, C.: A secure poker protocol that minimizes the effect of player coalitions. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 73–86. Springer, Heidelberg (1986).  https://doi.org/10.1007/3-540-39799-X_8 CrossRefGoogle Scholar
  17. 17.
    Crépeau, C.: A zero-knowledge Poker protocol that achieves confidentiality of the players’ strategy or How to achieve an electronic Poker face. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 239–247. Springer, Heidelberg (1987).  https://doi.org/10.1007/3-540-47721-7_18 CrossRefGoogle Scholar
  18. 18.
    Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 106–125. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_8 CrossRefGoogle Scholar
  19. 19.
    Damgård, I., Fazio, N., Nicolosi, A.: Non-interactive zero-knowledge from homomorphic encryption. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 41–59. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_3 CrossRefGoogle Scholar
  20. 20.
  21. 21.
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)CrossRefzbMATHGoogle Scholar
  22. 22.
    Wei, T.J.: Secure and practical constant round mental poker. Inf. Sci. (2014)Google Scholar
  23. 23.
    Wei, T.J., Wang, L.-C.: A fast mental poker protocol. J. Math. Cryptology 6(1), 39–68 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49896-5_25 CrossRefGoogle Scholar
  25. 25.
    Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: IEEE S&P (2016)Google Scholar
  26. 26.
    Kumaresan, R., Moran, T., Bentov, I.: How to use bitcoin to play decentralized poker. In: CCS (2015)Google Scholar
  27. 27.
    Kumaresan, R., Bentov, I.: Amortizing secure computation with penalties. In: CCS (2016)Google Scholar
  28. 28.
    Kumaresan, R., Vaikuntanathan, V., Vasudevan, P.N.: Improvements to secure computation with penalties. In: CCS (2016)Google Scholar
  29. 29.
    Lipton, R.: How to cheat at mental poker. In: AMS Short Course on Crypto (1981)Google Scholar
  30. 30.
  31. 31.
    Miller, A., Bentov, I.: Zero-collateral lotteries in bitcoin and ethereum. In: IEEE S&B Workshop (2017). https://arxiv.org/abs/1612.05390
  32. 32.
    Möser, M., Eyal, I., Gün Sirer, E.: Bitcoin covenants. In: Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS, vol. 9604, pp. 126–141. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53357-4_9 CrossRefGoogle Scholar
  33. 33.
    Nakamoto, S.: Bitcoin: A Peer-to-Peer Electronic Cash System (2008)Google Scholar
  34. 34.
    O’Connor, R., Piekarska, M.: Enhancing bitcoin transactions with covenants. In: Financial Cryptography Bitcoin Workshop (2017)Google Scholar
  35. 35.
    Pinkas, B.: Fair secure two-party computation. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 87–105. Springer, Heidelberg (2003).  https://doi.org/10.1007/3-540-39200-9_6 CrossRefGoogle Scholar
  36. 36.
    Shamir, A., Rivest, R., Adleman, L.: Mental poker. In: The Mathematical Gardener (1981)Google Scholar
  37. 37.
  38. 38.
    Wood, G.: Ethereum: A secure decentralized transaction ledger (2014). http://gavwood.com/paper.pdf

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  1. 1.Cornell UniversityIthacaUSA
  2. 2.Microsoft ResearchRedmondUSA
  3. 3.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations