Advertisement

Strengthening Access Control Encryption

  • Christian Badertscher
  • Christian Matt
  • Ueli Maurer
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10624)

Abstract

Access control encryption (ACE) was proposed by Damgård et al. to enable the control of information flow between several parties according to a given policy specifying which parties are, or are not, allowed to communicate. By involving a special party, called the sanitizer, policy-compliant communication is enabled while policy-violating communication is prevented, even if sender and receiver are dishonest. To allow outsourcing of the sanitizer, the secrecy of the message contents and the anonymity of the involved communication partners is guaranteed.

This paper shows that in order to be resilient against realistic attacks, the security definition of ACE must be considerably strengthened in several ways. A new, substantially stronger security definition is proposed, and an ACE scheme is constructed which provably satisfies the strong definition under standard assumptions.

Three aspects in which the security of ACE is strengthened are as follows. First, CCA security (rather than only CPA security) is guaranteed, which is important since senders can be dishonest in the considered setting. Second, the revealing of an (unsanitized) ciphertext (e.g., by a faulty sanitizer) cannot be exploited to communicate more in a policy-violating manner than the information contained in the ciphertext. We illustrate that this is not only a definitional subtlety by showing how in known ACE schemes, a single leaked unsanitized ciphertext allows for an arbitrary amount of policy-violating communication. Third, it is enforced that parties specified to receive a message according to the policy cannot be excluded from receiving it, even by a dishonest sender.

Keywords

Access control encryption Information flow control Chosen-ciphertext attacks 

References

  1. 1.
    Abdalla, M., Bellare, M., Neven, G.: Robust encryption. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 480–497. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-11799-2_28 CrossRefGoogle Scholar
  2. 2.
    Bell, D.E., LaPadula, L.J.: Secure computer systems: mathematical foundations. Technical report MTR-2547, MITRE (1973)Google Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Desai, A., Pointcheval, D.: Key-privacy in public-key encryption. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 566–582. Springer, Heidelberg (2001).  https://doi.org/10.1007/3-540-45682-1_33 CrossRefGoogle Scholar
  4. 4.
    Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19571-6_16 CrossRefGoogle Scholar
  5. 5.
    Canetti, R., Krawczyk, H., Nielsen, J.B.: Relaxing chosen-ciphertext security. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 565–582. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_33 CrossRefGoogle Scholar
  6. 6.
    Damgård, I., Haagh, H., Orlandi, C.: Access control encryption: enforcing information flow with cryptography. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9986, pp. 547–576. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-53644-5_21 CrossRefGoogle Scholar
  7. 7.
    Elgamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Farshim, P., Libert, B., Paterson, K.G., Quaglia, E.A.: Robust encryption, revisited. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 352–368. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36362-7_22 CrossRefGoogle Scholar
  9. 9.
    Fuchsbauer, G., Gay, R., Kowalczyk, L., Orlandi, C.: Access control encryption for equality, comparison, and more. In: Fehr, S. (ed.) PKC 2017. LNCS, vol. 10175, pp. 88–118. Springer, Heidelberg (2017).  https://doi.org/10.1007/978-3-662-54388-7_4 CrossRefGoogle Scholar
  10. 10.
    Golle, P., Jakobsson, M., Juels, A., Syverson, P.: Universal re-encryption for mixnets. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 163–178. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24660-2_14 CrossRefGoogle Scholar
  11. 11.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM (2006)Google Scholar
  12. 12.
    Groth, J.: Rerandomizable and replayable adaptive chosen ciphertext attack secure cryptosystems. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 152–170. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-24638-1_9 CrossRefGoogle Scholar
  13. 13.
    Kim, S., Wu, D.J.: Access control encryption for general policies from standard assumptions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 471–501. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  14. 14.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proceedings of the Twenty-second Annual ACM Symposium on Theory of Computing, STOC 1990, pp. 427–437. ACM (1990)Google Scholar
  15. 15.
    Prabhakaran, M., Rosulek, M.: Rerandomizable RCCA encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 517–534. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-74143-5_29 CrossRefGoogle Scholar
  16. 16.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, pp. 543–553 (1999)Google Scholar
  17. 17.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).  https://doi.org/10.1007/11426639_27 CrossRefGoogle Scholar
  18. 18.
    Tan, G., Zhang, R., Ma, H., Tao, Y.: Access control encryption based on LWE. In: Proceedings of the 4th ACM International Workshop on ASIA Public-Key Cryptography, APKC 2017, pp. 43–50. ACM (2017)Google Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Christian Badertscher
    • 1
  • Christian Matt
    • 1
  • Ueli Maurer
    • 1
  1. 1.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations