Cardiac Cell Culture Microtechnologies Based on Stem Cells

  • Anna Kobuszewska
  • Patrycja Sokolowska
  • Elzbieta JastrzebskaEmail author


Stem cells (SCs) are the main source of biological material used in cell therapy and tissue engineering. Additionally, these cells are being investigated as a potential therapy technique for cardiovascular diseases (CVDs) and heart regeneration. To improve the investigation of SC proliferation and maturation, the Lab-on-a-Chip systems are being developed. There are many reports, which have proven that such microsystems have been successfully used for SC differentiation into different cell lineages. In this chapter, we present Heart-on-a-chip systems based on stem cells—the microsystems utilized for SC differentiation into cardiomyocytes (CMs). Various types of SC differentiation performed in Lab-on-a-chip systems are presented at the beginning of this chapter. Next, biochemical, physical and mechanical stimulations are presented as techniques to perform cardiogenesis. Other promising methods, especially the use of graphene and their other forms, which could be used for cardiac differentiation, are presented at the end of this chapter. Finally, we summarize the research focused on heart regeneration using the Lab-on-a-chip systems, and we outline future perspectives for microsystem usage for SC differentiation into CMs.


Cardiomyocytes Cardiovascular diseases Differentiation Heart-on-a-chip Microsystems Stem cells 



This work was realized with the frame of project LIDER No. LIDER/026/573/L-4/12/NCBR/2013.


  1. Alamein AM, Wolvetag EJ, Ovchinnikov DA, Stephens S, Sanders K, Warnke PH (2015) Polymeric nanofibrous substrates stimulate pluripotent stem cells to form three-dimensional multilayered patty-like spheroids in feeder-free culture and maintain their pluripotency. J Tissue Eng Regen Med 9:1078–1083CrossRefGoogle Scholar
  2. Annabi N, Tsang K, Mithieux SM, Nikkhah M, Ameri A, Khademhosseini A, Weiss AS (2013) Highly elastic micropatterned hydrogel for engineering functional cardiac tissue. Adv Funct Mater 23:4950–4959CrossRefGoogle Scholar
  3. Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S (2010) Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 16:1417–1426CrossRefGoogle Scholar
  4. Bergström G, Christoffersson J, Schwanke K, Zweigerdt R, Mandenius CF (2015) Stem cell derived in vivo-like human cardiac bodies in a microfluidic device for toxicity testing by beating frequency imaging. Lab Chip 15:3242–3249CrossRefGoogle Scholar
  5. Bhuthalingam R, Lim PQ, Irvine SA, Agrawal A, Mhaisalkar PS, An J, Chua CK, Venkatraman S (2015) A novel 3D printing method for cell alignment and differentiation. Int J Bioprinting 1:57–65Google Scholar
  6. Bianco A, Di Federico E, Moscatelli I, Camaioni A, Armentano I, Campagnolo L, Dottori M, Kenny JM, Siracusa G, Gusmano G (2009) Electrospun poly(e-prolactone)/Ca-deficient hydroxyapatite nanohybrids: microstructure, mechanical properties and cell response by murine embryonic stem cells. Mat Sci Eng C 29:2063–2071CrossRefGoogle Scholar
  7. Bitounis D, Ali-Boucetta H, Hong BH, Min D-H, Kostarelos K (2013) Prospects and challenges of graphene in biomedical applications. Adv Funct Mater 25:2258–2268CrossRefGoogle Scholar
  8. Campillo N, Jorba I, Schaedel L, Casals B, Gozal D, Farré R, Almendros I, Navajas D (2016) A novel chip for cyclic stretch and intermittent hypoxia cell exposures mimicking obstructive sleep apnea. Front Physiol 7: 319_1–319_12Google Scholar
  9. Charlier JC, Eklund PC, Zhu J, Ferrari AC (2008) Electron and phonon properties of graphene: their relationship with carbon nanotubes. In: Jorio A, Dresselhaus G, Dresselhaus MS (eds) Carbon nanotubes. Topics in applied physics, vol 111. Springer: Berlin, Heidelberg, p 673–709Google Scholar
  10. Chen MQ, Xie X, Wilson KD, Sun N, Wu JC, Giovangrandi L, Kovacs GT (2009) Current-controlled electrical point-source stimulation of embryonic stem cells. Cell Mol Bioeng 2:625–635CrossRefGoogle Scholar
  11. Cheng J, Ding Q, Wang J, Deng L, Yang L, Tao L, Lei H, Lu S (2016) 5-azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cell into cardiomyocytes. Nanoscale 8:2011–2021CrossRefGoogle Scholar
  12. Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K (2009) Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Eng Part A 15:1373–1380CrossRefGoogle Scholar
  13. Dimarakis I, Levicar N, Nihoyannopoulos P, Hbib NA, Gordon MY (2006) In vitro stem cell differentiation into cardiomyocytes: Part 1. Culture medium and growth factors. JCRR 1:107–114Google Scholar
  14. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677CrossRefGoogle Scholar
  15. Duinen V, Trietsch SJ, Joore J, Vulto P, Hankemeier T (2015) Microfluidic 3D cell culture: from tools to tissue models. Curr Opin Biotech 35:118–126CrossRefGoogle Scholar
  16. Emmert MY, Hitchcock RW, Hoerstrup SP (2014) Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration. Adv Drug Deliver Rev 69:254–269CrossRefGoogle Scholar
  17. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689CrossRefGoogle Scholar
  18. Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253CrossRefGoogle Scholar
  19. Figallo E, Cannizzaro C, Gerecht S, Burdick JA, Langer R, Elvassore N, Vunjak-Novakovic G (2007) Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7:710–719CrossRefGoogle Scholar
  20. Flaim CJ, Teng D, Chien S, Bhatia SN (2008) Combinatorial signalling microenvironments for studying stem cell fate. Stem Cell Dev 17:29–39CrossRefGoogle Scholar
  21. Geuss LR, Wu DC, Ramamoorthy D, Alford CD, Suggs LJ (2014) Paramagnetic beads and magnetically mediated strain enhance cardiomyogenesis in mouse embryoid bodies. PLoS ONE 9:1–20CrossRefGoogle Scholar
  22. Ghafar-Zadeh E, Waldeisen JR, Le LP (2011) Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip 11:3031–3048CrossRefGoogle Scholar
  23. Ghasemi-Mobarakeh L, Prabhakaran MP, Nematollahi M, Karbalaie K, Ramakrishna S, Nasr-Esfahani MH (2014) Embryonic stem cells differentiation to cardiomyocytes on nanostructured scaffolds for myocardial tissue regeneration. Int J Polym Mater 63:240–245CrossRefGoogle Scholar
  24. Ghiaseddin A, Pouri H, Soleimani M, Vasheghani-Farahani E, Ahmadi Tafti H, Hashemi-Najafabadi S (2017) Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study. Biochem Biophys Res Commun 484:225–230CrossRefGoogle Scholar
  25. Goβmann M, Frotscher R, Linder P, Neumann S, Bayer R, Epple M, Staat M, (Temiz) Artmann A, Artmann GM (2016) Mechano-pharmacological characterisation of cardiomyocytes derived from human induced pluripotent stem cells. Cell Physiol Biochem 38:1182–1198Google Scholar
  26. Guilak F, Cohen DM, Estes BT, Gimble JM, Liedtje W, Chen CS (2009) Control stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5:17–26CrossRefGoogle Scholar
  27. Gupta K, Kim D-H, Ellison D, Smith C, Kundu A, Tuan J, Suh KY, Levchenko A (2010) Lab-on-a-chip devices as an emerging platform for stem cell biology. Lab Chip 10:2019–2031CrossRefGoogle Scholar
  28. Gwak S-J, Bhang SH, Kim I-K, Kim S-S, Cho S-W, Jeon O, Yoo KJ, Putnam AJ, Kim B-S (2008) The effect of cyclic strain on embryonic stem cell-derived cardiomyocytes. Biomaterials 29:844–856CrossRefGoogle Scholar
  29. Hashemi SM, Soudi S, Shabani I, Naderi M, Soleimani M (2011) The promotion of stemness and pluripotency following feeder-free culture of embryonic stem cells on collagen-grafted 3-dimensional nanofibrous scaffold. Biomaterials 32:7363–7374CrossRefGoogle Scholar
  30. Heydarkhan-Hagvall S, Schenke-Layland K, Dhanasopon AP, Rofail F, Smith H, Wu BM, Shemin R, Beygiu RE, MacLellan WR (2008) Three-dimentional electrospun ECM-based hybrid scaffolds for cardiovascular tissue engineering. Biomaterials 29:2907–2914CrossRefGoogle Scholar
  31. Higuchi A, Kumar SS, Ling QD, Alarfaj AA, Munusamy MA, Murugan K, Hsu S-T, Benelli G, Umezawa A (2017) Polymeric design of cell culture materials that guide the differentiation of human pluripotent stem cells. Prog Polym Sci 65:83–126CrossRefGoogle Scholar
  32. Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, Gorham J, Yang L, Schafer S, Sheng CC, Haghighi A, Homsy J, Hubner N, Church G, Cook SA, Linke WA, Chen CS, Seidman JG, Seidman CE (2015) HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science 349:644–654CrossRefGoogle Scholar
  33. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliv Rev 64:18–23CrossRefGoogle Scholar
  34. Huang A, Sun D, Jcobson A, Carroll MA, Falck JR, Kaley G (2005) Epoxyeicosatrienoic acids are released to mediate shear stress-dependent hyperpolarisation of arteriolar smooth muscle. Circ Res 96:376–383CrossRefGoogle Scholar
  35. Huang Y, Jia X, Bai X, Gong X, Fan Y (2010) Effect of fluid shear stress on cardiomyogenic differentiation of rat bone marrow mesenchymal stem cells. Arch Med Res 41:497–505CrossRefGoogle Scholar
  36. Hwang NS, Varghese S, Elisseeff J (2008) Controlled differentiation of stem cells. Adv Drug Deliv Rev 60:199–214CrossRefGoogle Scholar
  37. Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81CrossRefGoogle Scholar
  38. Jenkins MW, Duke AR, Gu S, Chiel HJ, Fujioka H, Watanabe M, Jansen ED, Rollins AM (2010) Optical pacing of the embryonic heart. Nat Photonics 4:623–626CrossRefGoogle Scholar
  39. Jeon JS, Bersini S, Whisler JA, Chen MB, Dubini G, Charest JL, Moretti M, Kamm RD (2014) Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic system. Integr Biol 6:555–563CrossRefGoogle Scholar
  40. Ju X, Li D, Gao N, Shi Q, Hou H (2008) Hepatogenic differentiation of mesenchymal stem cells using microfluidic chips. Biotechnology 3:383–391Google Scholar
  41. Kang E, Choi YY, Jun Y, Chung BG, Lee SH (2010) Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10:2651–2654CrossRefGoogle Scholar
  42. Kawai T, Takahashi T, Esaki M, Ushikoshi H, Nagano S, Fujiwara H, Kosai K (2004) Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenic protein 2. Circ J 68:691–702CrossRefGoogle Scholar
  43. Kawamura M, Miyagawa S, Miki K, Saito A, Fukushima S, Higuchi T, Kawamura T, Kuratani T, Daimon T, Shimizu T, Okano T, Sawa Y (2012) Feasibility, safety, and therapeutic efficacy of human induced pluripotent stem cell-derived cardiomyocyte sheets in a porcine ischemic cardiomyopathy model. Circulation 126:29–37CrossRefGoogle Scholar
  44. Kim KM, Choi YJ, Hwang J-H, Kim AR, Cho HJ, Hwang ES, Park JY, Lee S-H, Hong J-H (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS ONE 9:e92427-1–e92427-9Google Scholar
  45. Kofidis T, de Bruin JL, Yamane T, Balsam LB, Lebl DR, Swijnenburg RJ, Tanaka M, Weissman IL, Robbins RC (2004) Insulin-like growth factor promotes engraftment, differentiation, and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22:1239–1245CrossRefGoogle Scholar
  46. Ku SH, Park CB (2013) Myoblast differentiation on graphene oxide. Biomaterials 34:2017–2023CrossRefGoogle Scholar
  47. Kujala K, Ahola A, Hyttinen J, Kerkela E, Aalto-Setala K (2012) Electrical field stimulation with a novel platform: effect on cardiomyocyte gene expression but not on orientation. Int J Biomed Sci 8:109–120Google Scholar
  48. Kumar D, Sun B (2005) Transforming growth factor-beta2 enhances differentiation of cardiac myocytes from embryonic stem cells. Biochem Biophys Res Commun 332:135–141CrossRefGoogle Scholar
  49. Kurpinski K, Chu J, Hashi C, Li S (2006) Anisotropic mechanosensing by mesenchymal stem cells. Proc Natl Acad Sci USA 103:16095–16100CrossRefGoogle Scholar
  50. Lee JM, Kim J, Kang E, Lee SH, Chung BG (2011a) An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 32:3133–3137CrossRefGoogle Scholar
  51. Lee WC, Lim CHYX, Shi H, Tang LAL, Wang Y, Lim CT, Loh KP (2011b) Origin enhanced stem cell growth and differentiation on graphene and graphene oxide. ACS Nano 5:7334CrossRefGoogle Scholar
  52. Lee T-J, Park S, Bhang SH, Yoon J-K, Jo I, Jeong G-J, Hong BH, Kim B-S (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem Bioph Res Co 452:174–180CrossRefGoogle Scholar
  53. Li Q, Cheung WH, Chow KL, Ellis-Behnke RG, Chau Y (2012) Factorial analysis of adaptable properties of self-assembling peptide matrix on cellular proliferation and neuronal differentiation of pluripotent embryonic carcinoma. Nanomedicine 8:748–756CrossRefGoogle Scholar
  54. Liu L, Yoshioka M, Nakajima M, Ogasawara A, Liu J, Hasegawa K, Li S, Zou J, Nakatsuji N, Kamei K, Chen Y (2014) Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 35:6259–6267CrossRefGoogle Scholar
  55. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138CrossRefGoogle Scholar
  56. Luo Y, Shen H, Fang Y, Cao Y, Huang J, Zhang M, Dai J, Shi X, Zhang Z (2015) Enhanced proliferation and osteogenic differentiation of mesenchymal stem cells on grapheme oxide-incorporated electrospun poly(lactic-co-glycolic acid) nanofibrous mats. ACS Appl Mater Interfaces 7:6331–6339CrossRefGoogle Scholar
  57. Lutolf MP, Blau HM (2009) Artificial stem cell niches. Adv Mater 21:3255–3268CrossRefGoogle Scholar
  58. Ma Z, Liu Q, Liu H, Yang H, Yun JX, Eisenberg C, Borg TK, Xu M, Gao BZ (2012) Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 12:566–573CrossRefGoogle Scholar
  59. Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23CrossRefGoogle Scholar
  60. Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissue. Lab Chip 16:599–610CrossRefGoogle Scholar
  61. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:1–7CrossRefGoogle Scholar
  62. Mathur A, Ma Z, Loskill P, Jeeawoody S, Healy KE (2016) In vitro cardiac tissue models: current status and future prospects. Adv Drug Deliv Rev 15:203–213CrossRefGoogle Scholar
  63. Matteini P, Tatini F, Cavigli L, Ottaviano S, Ghini G, Pini R (2014) Graphene as a photothermal switch for controlled drug release. Nanoscale 6:7947–7953CrossRefGoogle Scholar
  64. Metallo CM, Vodyanik MA, de Pablo JJ, Slukvin II, Palecek SP (2008) The response of human embryonic stem cell-derived endothelial cells to shear stress. Biotechnol Bioeng 100:830–837CrossRefGoogle Scholar
  65. Miyamoto D, Ohno K, Hara T, Koga H, Nakazawa K (2016) Effect of separation distance on the growth and differentiation of mouse embryoid bodies in micropatterned cultures. J Biosci Bioeng 121:105–110CrossRefGoogle Scholar
  66. Mohr JC, de Pablo JJ, Palecek SP (2006) 3-D microwell culture of human embryonic stem cells. Biomaterials 27:6032–6042CrossRefGoogle Scholar
  67. Moya M, Tran D, George SC (2013) An integrated in vitro model of perfused tumor and cardiac tissue. Stem Cell Res Ther 4:S15-1–S15-6Google Scholar
  68. Mummery CI, Zhang J, Ng ES, Elliott DA, Elefanty AG, Kamp TJ (2012) Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview. Circ Res 111:344–358CrossRefGoogle Scholar
  69. Murphy WL, McDevitt TC, Engler AJ (2014) Materials as stem cell regulators. Nat Mater 13:547–557CrossRefGoogle Scholar
  70. Myers FB, Zarins CK, Abilez OJ, Lee LP (2013) Label-free electrophysiological cytometry for stem cell-derived cardiomyocyte cluster. Lab Chip 13:220–228CrossRefGoogle Scholar
  71. Ni XF, Crozatier C, Sensebe L, Langonne A, Wang L, Fan Y, He PG, Chen Y (2008) On-chip differentiation of human mesenchymal stem cells into adipocytes. Microelectron Eng 85:1330–1333CrossRefGoogle Scholar
  72. Oberti S, Möller D, Neild A, Dual J, Beyeler F, Nelson BJ, Gutmann S (2010) Strategies for single particle manipulation using acoustic and flow fields. Ultrasonics 50:247–257CrossRefGoogle Scholar
  73. Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S (2004) Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol Bioeng 88:356–368CrossRefGoogle Scholar
  74. Park JY, Takayama S, Lee S-H (2010) Regulating microenvironmental stimuli for stem cells and cancer cells using microsystems. Integr Biol 2:229–240CrossRefGoogle Scholar
  75. Pavesi A, Adriani G, Rasponi M, Zervantonakis IK, Fiore GB, Kamm RD (2015) Controlled electromechanical cell stimulation on-a-chip. Sci Rep 5:1–12CrossRefGoogle Scholar
  76. Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26:4744–4755CrossRefGoogle Scholar
  77. Pek YS, Wan AC, Ying JY (2010) The effect of matrix stiffness on mesenchymal stem cell differentiation in a 3D thixotropic gel. Biomaterials 31:385–391CrossRefGoogle Scholar
  78. Perez RA, Choi S-J, Han C-M, Kim J, Shim H, Leong KW, Kim H-W (2016) Biomaterials control of pluripotent stem cell fate for regenerative medicine. Prog Mater Sci 82:234–293CrossRefGoogle Scholar
  79. Phillips BW, Horne R, Lay TS, Rust WL, Teck TT, Crook JM (2008) Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138:24–32CrossRefGoogle Scholar
  80. Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sens Actuat B Chem 171–172:62–76CrossRefGoogle Scholar
  81. Rao C, Prodromakis T, Kolker L, Chaudhry UA, Trantidou T, Sridhar A, Weekes C, Camelliti P, Harding SE, Darzi A, Yacoub MH, Athanasiou T, Terracciano CM (2013) The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 34:2399–2411CrossRefGoogle Scholar
  82. Rosenblatt-Velin N, Lepore MG, Cartoni C, Beermann F, Pedrazzini T (2005) FGF-2 controls the differentiation of resident cardiac precursors into functional cardiomyocytes. J Clin Invest 115:1724–1733CrossRefGoogle Scholar
  83. Ruan JL, Tulloch NL, Saiget M, Paige SL, Razumova MV, Regnier M, Tung KC, Keller G, Pabon L, Reinecke H, Murry CE (2015) Mechanical stress promotes maturation of human myocardium from pluripotent stem cell-derived progenitors. Stem Cells 33:2148–2157CrossRefGoogle Scholar
  84. Salic MR, Napiwocki BN, Sha J, Knight GT, Chindhy SA, Kamp TJ, Ashton RS, Crone WC (2014) Micropattern width dependent sarcomere development in human ESC-derived cardiomyocytes. Biomaterials 35:4454–4464CrossRefGoogle Scholar
  85. Schaaf S, Schibamiya A, Mewe M, Eder A, Stöhr A, Hirt MN, Rau T, ZimmermannW-H, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6:e26397-1–e26397-11Google Scholar
  86. Segers VF, Lee RT (2008) Stem-cell therapy for cardiac disease. Nature 451:937–942CrossRefGoogle Scholar
  87. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619CrossRefGoogle Scholar
  88. Shimko VF, Claycomb WC (2008) Effect of mechanical loading on three-dimentional cultures of embryonic stem cell-derived cardiomyocytes. J Mol Med 75:901–920Google Scholar
  89. Silvestre J-S, Menasché P (2015) The evolution of the stem theory for heart failure. EBioMedicine 2:1871–1879CrossRefGoogle Scholar
  90. Simmons CS, Petzold BC, Pruitt BL (2012) Microsystems for biomimetic stimulation of cardiac cells. Lab Chip 12:3235–3248CrossRefGoogle Scholar
  91. Smith LA, Liu X, Hu J, Ma PX (2010) The enhancement of human embryonic stem cell osteogenic differentiation with nano-fibrous scaffolding. Biomaterials 31:5526–5535CrossRefGoogle Scholar
  92. Solanki A, Shah S, Memoli KA, Park SY, Hong S, Lee KB (2010) Controlling differentiation of neural stem cells using extracellular matrix protein patterns. Small 6:2509–2513CrossRefGoogle Scholar
  93. Stoppel WL, Kaplan DL, Black LD III (2016) Electrical and mechanical stimulation of cardiac cells and tissue constructs. Adv Drug Deliver Rev 96:135–155CrossRefGoogle Scholar
  94. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, Dai H (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212CrossRefGoogle Scholar
  95. Tabar V, Studer L (2014) Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nat Rev Genet 15:82–92CrossRefGoogle Scholar
  96. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  97. Tanaka Y, Fujita H (2015) Fluid driving system for a micropump by differentiating iPS cells into cardiomyocytes on a tent-like structure. Sens Actuat B Chem 210:267–272CrossRefGoogle Scholar
  98. Tandon N, Cannizzaro C, Chao P-HG, Maidhof R, Marsano A, Au HTH, Radisic M, Vunjak-Navakovic G (2009) Electrical stimulation systems for cardiac tissue engineering. Nat Protoc 4:155–173CrossRefGoogle Scholar
  99. Tandon N, Marsano A, Maidhof R, Numata K, Montouri-Sorrentino C et al (2010) Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 10:692–700CrossRefGoogle Scholar
  100. Thavandiran N, Dubois N, Mikryukov A, Massé S, Beca B, Simmons CA, Deshpande VS, McGarry JP, Chen CS, Nanthakumar K, Keller GM, Radisic M, Zandstra PW (2013) Design and formulation of functional pluripotent stem cell-derived cardiac microtissue. Proc Natl Acad Sci 110:E4698–E4707CrossRefGoogle Scholar
  101. Toh YC, Voldman J (2010) Multiplex microfluidic perfusion identifies shear stress mechanosensing mediators in mouse embryonic stem cells. In: 14th international conference on miniaturized systems for chemistry and life sciences, Groningen, The Netherlands, 3–7 October 2010Google Scholar
  102. Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng C 75:305–316CrossRefGoogle Scholar
  103. Tzatzalos E, Abilez OJ, Shukla P, Wu JC (2016) Engineered heart tissue and induced pluripotent stem cells: macro- and microstructures for disease modeling, drug screening, and translational studies. Adv Drug Deliver Rev 96:234–244CrossRefGoogle Scholar
  104. Uzel SGM, Pavesi A, Kamm RD (2014) Microfabrication and microfluidics for muscle tissue models. Prog Biophys Mol Biol 115:279–293CrossRefGoogle Scholar
  105. Villa-Diaz LG, Torisawa Y, Uchida T, Ding J, Nogueira-de-Souza NC, O’Shea KS, Takayama S, Smith GD (2009) Microfluidic culture of single human embryonic stem cell colonies. Lab Chip 9:1749–1755CrossRefGoogle Scholar
  106. Wan CR, Chung S, Kamm RD (2011) Differentiation of embryonic stem cells into cardiomyocytes in a compliant microfluidic system. Ann Biomed Eng 39:1840–1847CrossRefGoogle Scholar
  107. Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16:229–241CrossRefGoogle Scholar
  108. Wang B, Jedlicka S, Cheng X (2014) Maintenance and neuronal cell differentiation of neural stem cells c17.2 correlated to medium availability sets design criteria in microfluidic systems. PLoS ONE 9:e109815-1–e109815-15Google Scholar
  109. Wu CC, Chao YC, Chen CN, Chien S, Chen YC, Chien CC, Chiu JJ, Yen BL (2008) Synergism of biochemical and mechanical stimuli in the differentiation of human placenta-derived multipotent cells into endothelial cells. J Biomech 41:813–821CrossRefGoogle Scholar
  110. Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimic native cardiac bundle. Lab Chip 14:869–882CrossRefGoogle Scholar
  111. Yang H, Ma Z (2012) Microsystem for stem cell-based cardiovascular research. BioNano Sci 2:305–315CrossRefGoogle Scholar
  112. Yang K, Park H-J, Han S, Lee J, Ko E, Kim J, Lee JS, Yu JH, Song KY, Cheong E, Cho SR, Chung S, Cho SW (2015) Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials 63:177–188CrossRefGoogle Scholar
  113. Yang H, Borg TK, Ma Z, Xu M, Wetzel G, Saraf LV, Markwald R, Runyan RB, Gao BZ (2016) Biochip-based study of unidirectional mitochondrial transfer from stem cells to myocytes via tunneling nanotubes. Biofabrication 4:015012CrossRefGoogle Scholar
  114. Yang SH, Choi JW, Huh D, Jo HA, Kim S, Lim CS, Lee JC, Kim HC, Kwon HM, Jeong CW, Kwak C, Joo KW, Kim YS, Kim DK (2017) Roles of fluid shear stress and retinoic acid in the differentiation of primary cultured human podocytes. Exp Cell Res 354:48–56CrossRefGoogle Scholar
  115. Ye Z, Zhou Y, Cai H, Tan W (2011) Myocardial regeneration: roles of stem cells and hydrogels. Adv Drug Deliver Rev 63:688–697CrossRefGoogle Scholar
  116. Yoon HH, Bhang SH, Kim T, Yu T, Hyeon T, Kim B-S (2014) Dual roles of graphene oxide in chondrogenic differentiation of adult stem cells: cell-adhesion substrate and growth factor-delivery carrier. Adv Funct Mater 24:6455–6464CrossRefGoogle Scholar
  117. Yu J, Du KT, Fang Q, Gu Y, Mihardja SS, Sievers RE, Wu JC, Lee RJ (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31:7012–7020CrossRefGoogle Scholar
  118. Zhang Q, Austin RH (2012) Applications of microfluidics in stem cell biology. Bionanoscience 2:277–286CrossRefGoogle Scholar
  119. Zhang C, Xing D, Li Y (2007) Micropumps, microvalves, and micromixers within PCR microfluidic chip: advances and trends. Biotechnol Adv 25:483–514CrossRefGoogle Scholar
  120. Zhang J, Yang H, Shen G, Cheng P, Zhang J, Guo S (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46:1112–1114CrossRefGoogle Scholar
  121. Zhou J, Zhang Y, Lin Q, Liu Z, Wang H, Duan C, Wang Y, Hao T, Wu K, Wang C (2010) Embryoid bodies formation and differentiation from mouse embryonic stem cells in collagen/Matrigel scaffolds. J Genet Genomics 37:451–460CrossRefGoogle Scholar
  122. Zhou Y, Basu S, Laue E, Seshia AA (2016) Single cell studies of mouse embryonic stem cell (mESC) differentiation by electrical impedance measurements in a microfluidic device. Biosens Bioelectron 81:249–258CrossRefGoogle Scholar
  123. Zimmermann WH, Melnychenko I, Wasmeier G, Didié M, Naito H, Nixdorff U, Hess A, Budinsky L, Brune K, Michaelis B, Dhein S, Schwoerer A, Ehmke H, Eschenhagen T (2006) Engineered heart tissue grafts improve systolic and diastolic function in infracted rat heart. Nat Med 12:452–458CrossRefGoogle Scholar
  124. Zuppinger C (2016) 3D culture for cardiac cells. Biochim Biophys Acta 1863:1873–1881CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Anna Kobuszewska
    • 1
  • Patrycja Sokolowska
    • 1
  • Elzbieta Jastrzebska
    • 1
    Email author
  1. 1.The Chair of Medical Biotechnology, Faculty of ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations