Heart-on-a-chip Systems

  • Magdalena Bulka
  • Elzbieta JastrzebskaEmail author


Heart diseases are the most common cause of death around the world. Therefore, it is important to develop new drugs and therapies, which can be useful in the treatment of cardiovascular diseases (CVDs). Elaboration of in vivo-like culture models of heart cells will allow the mimicking of native heart tissue and the investigation of heart cell response to the exposure of external stimuli. Heart-on-a-chip systems can be successfully used to imitate heart tissue functions and to perform assays based on cardiotherapy. In this chapter, we present Heart-on-a-chip systems, which can be utilized for various types of assays. Different cardiac cell cultures performed in Lab-on-a-chip systems are characterized at the beginning of this chapter. Single, monolayer, and spatial cell cultures are presented. Next, examples of cardiotoxicity assays and electrical stimulations performed in Heart-on-a-chip systems are described. Methods of heart cell analysis used in microscale are also defined. Finally, we summarize the research focused on Heart-on-a-chip systems and we outline perspectives for the usage of such microsystems.


Cardiomyocytes Cardiovascular disease Heart-on-a-chip Stem cells Vascular system 



This work was realized with the frame of project LIDER No. LIDER/026/573/L-4/12/NCBR/2013.


  1. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13:3599–3608CrossRefGoogle Scholar
  2. Ahn BY, Duoss EB, Motala JM, Guo X, Park S-I, Xiong Y, Yoon J, Nuzzo RG, Rogers JA, Lewis JA (2009) Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323:1590–1593CrossRefGoogle Scholar
  3. Akins RE, Boyce RA, Madonna ML, Schroedl NA, Gonda SR, McLaughlin TA, Hartzell CR (1999) Cardiac organogenesis in vitro: reestablishment of three-dimensional tissue architecture by dissociated neonatal rat ventricular cells. Tissue Eng 5:103–118CrossRefGoogle Scholar
  4. Annabi N, Selimovic S, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13:3569–3577CrossRefGoogle Scholar
  5. Au HTH, Cui B, Chu ZE, Veres T, Radisic M (2009) Cell culture chips for simultaneous application of topographical and electrical cues enhance phenotype of cardiomyocytes. Lab Chip 9:564–575CrossRefGoogle Scholar
  6. Barash Y, Dvir T, Tandeitnik P, Ruvinov E, Guterman H, Cohen S (2010) Electric field stimulation integrated into perfusion bioreactor for cardiac tissue engineering. Tissue Eng Part C Methods 16:1417–1426CrossRefGoogle Scholar
  7. Belaguli NS, Sepulveda JL, Nigam V, Charron F, Nemer M, Schwartz RJ (2000) Cardiac tissue enriched factors serum response factor and gata-4 are mutual coregulators. Mol Cell Biol 20:7550–7558CrossRefGoogle Scholar
  8. Beyer ST, Bsoul A, Ahmadi A, Walus K (2013) 3D alginate constructs for tissue engineering printed using a coaxial flow focusing microfluidic device. IEEE 1206–1209. doi: 10.1109/Transducers.2013.6626990
  9. Bhaarathy V, Venugopal J, Gandhimathi C, Ponpandian N, Mangalaraj D, Ramakrishna S (2014) Biologically improved nanofibrous scaffolds for cardiac tissue engineering. Mater Sci Eng C Mater Biol Appl 44:268–277CrossRefGoogle Scholar
  10. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917CrossRefGoogle Scholar
  11. Boudou T, Legant WR, Mu A, Borochin MA, Thavandiran N, Radisic M, Zandstra PW, Epstein JA, Margulies KB, Chen CS (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919CrossRefGoogle Scholar
  12. Chan CY, Huang PH, Guo F, Ding X, Kapur V, Mai JD, Yuen PK, Huang TJ (2013) Accelerating drug discovery via organs-on-chips. Lab Chip 13:4697–4710CrossRefGoogle Scholar
  13. Cheah LT, Dou YH, Seymour AM, Dyer CE, Haswell SJ, Wadhawan JD, Greenman J (2010) Microfluidic perfusion system for maintaining viable heart tissue with real-time electrochemical monitoring of reactive oxygen species. Lab Chip 10:2720–2726CrossRefGoogle Scholar
  14. Chen MQ, Xie X, Wilson KD, Sun N, Wu JC, Giovangrandi L, Kovacs GT (2009) Current-controlled electrical point-source stimulation of embryonic stem cells. Cell Mol Bioeng 2:625–635CrossRefGoogle Scholar
  15. Chen Y, Chan HN, Michael SA, Shen Y, Chen Y, Tian Q, Huang L, Wu H (2017) A microfluidic circulatory system integrated with capillary-assisted pressure sensors. Lab Chip 17:653–662CrossRefGoogle Scholar
  16. Cheng W, Klauke N, Sedgwick H, Smith GL, Cooper JM (2006) Metabolic monitoring of the electrically stimulated single heart cell within a microfluidic platform. Lab Chip 6:1424–1431CrossRefGoogle Scholar
  17. Cheng W, Klauke N, Smith G, Cooper JM (2010) Microfluidic cell arrays for metabolic monitoring of stimulated cardiomyocytes. Electrophoresis 31:1405–1413CrossRefGoogle Scholar
  18. Conant G, Lai BFL, Lu RXZ, Korolj A, Wang EY, Radisic M (2017) High-content assessment of cardiac function using heart-on-a-chip devices as drug screening model. Stem Cell Rev 13:335–346CrossRefGoogle Scholar
  19. Dahl KN, Kalinowski A, Pekkan K (2010) Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics. Microcirculation 17:179–191CrossRefGoogle Scholar
  20. Dean DA, Ramanathan T, Machado D, Sundararajan R (2007) Electrical impedance spectroscopy study of biological tissues. J Electrostat 66:165–177CrossRefGoogle Scholar
  21. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10:1316–1322CrossRefGoogle Scholar
  22. Dorn T, Goedel A, Lam JT, Haas J, Tian Q, Herrmann F, Bundschu K, Dobreva G, Schiemann M, Dirschinger R, Guo Y, Kühl SJ, Sinnecker D, Lipp P, Laugwitz KL, Kühl M, Moretti A (2015) Direct nkx2-5 transcriptional repression of isl1 controls cardiomyocyte subtype identity. Stem Cells 33:1113–1129CrossRefGoogle Scholar
  23. Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML (2014) How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 69–70:158–169CrossRefGoogle Scholar
  24. Fermini B, Fossa AA (2003) The impact of drug-induced QT interval prolongation on drug discovery and development. Nat Rev Drug Discov 2:439–447CrossRefGoogle Scholar
  25. Force T, Kolaja KL (2011) Cardiotoxicity of kinase inhibitors: the prediction and translation of preclinical models to clinical outcomes. Nat Rev Drug Discov 10:111–126CrossRefGoogle Scholar
  26. Gao Q, He Y, Fu JZ, Liu A, Ma L (2015) Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials 61:203–215CrossRefGoogle Scholar
  27. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698CrossRefGoogle Scholar
  28. Garzoni LR, Rossi MID, de Barros APDN, Guarani V, Keramidas M, Balottin LBL, Adesse D, Takiya CM, Manso PP, Otazú IB, de Nazareth Meirellesa M, Borojevic R (2009) Dissecting coronary angiogenesis: 3D co-culture of cardiomyocytes with endothelial or mesenchymal cells. Exp Cell Res 315:3406–3418CrossRefGoogle Scholar
  29. Ges IA, Ivanov BL, Schaffer DK, Lima EA, Werdich AA, Baudenbacher FJ (2005) Thin-film IrOx pH microelectrode for microfluidic-based microsystems. Biosens Bioelectron 21:248–256CrossRefGoogle Scholar
  30. Ges IA, Dzhura IA, Baudenbacher FJ (2008) On-chip acidification rate measurements from single cardiac cells confined in sub-nanoliter volumes. Biomed Microdevices 10:347–354CrossRefGoogle Scholar
  31. Ghiaseddin A, Pouri H, Soleimani M, Vasheghani-Farahani E, Ahmadi Tafti H, Hashemi-Najafabadi S (2017) Cell laden hydrogel construct on-a-chip for mimicry of cardiac tissue in-vitro study. Biochem Biophys Res Commun 484:225–230CrossRefGoogle Scholar
  32. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173CrossRefGoogle Scholar
  33. Gupta V, Grande-Allen KJ (2006) Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc Res 72:375–383CrossRefGoogle Scholar
  34. Hall CN, Reynell C, Gesslein B, Hamilton NB, Mishra A, Sutherland BA, O’Farrell FM, Buchan AM, Lauritzen M, Attwell D (2014) Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508:55–60CrossRefGoogle Scholar
  35. Hamilton G (1988) Multicellular spheroids as an in vitro tumor model. Cancer Lett 131:29–34CrossRefGoogle Scholar
  36. Hansen A, Eder A, Bönstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B, Schwoerer AP, Uebeler J, Eschenhagen T (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107:35–44CrossRefGoogle Scholar
  37. Haraguchi Y, Shimizu T, Yamato M, Okano T (2012) Scaffold-free tissue engineering using cell sheet technology. RSC Adv 2:2184–2190CrossRefGoogle Scholar
  38. He J, Ma C, Liu W, Wang J (2014) On-chip monitoring of skeletal myoblast transplantation for the treatment of hypoxia-induced myocardial injury. Analyst 139:4482–4490CrossRefGoogle Scholar
  39. Hirt MN, Boeddinghaus J, Mitchell A, Schaaf S, Börnchen C, Müller C, Schulz H, Hubner N, Stenzig J, Stoehr A, Neuber C, Eder A, Luther PK, Hansen A, Eschenhagen T (2014) Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation. J Mol Cell Cardiol 74:151–161CrossRefGoogle Scholar
  40. Horiguchi H, Imagawa K, Hoshino T, Akiyama Y, Morishima K (2009) Fabrication and evaluation of reconstructed cardiac tissue and its application to bio-actuated microdevices. IEEE 8:349–355. doi: 10.1109/TNB.2009.2035282 Google Scholar
  41. Hussain A, Collins G, Yip D, Cho CH (2013) Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds. Biotechnol Bioeng 110:637–647CrossRefGoogle Scholar
  42. Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81CrossRefGoogle Scholar
  43. Jia W, Gungor-Ozkerim PS, Zhang YS, Yue K, Zhu K, Liu W, Pi Q, Byambaa B, Dokmeci MR, Shin SR, Khademhosseini A (2016) Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Biomaterials 106:58–68CrossRefGoogle Scholar
  44. Kaneko T, Kojima K, Yasuda K (2007) An on-chip cardiomyocyte cell network assay for stable drug screening regarding community effect of cell network size. Analyst 132:892–898CrossRefGoogle Scholar
  45. Khang DY, Xiao J, Kocabas C, MacLaren S, Banks T, Jiang H, Huang YY, Rogers JA (2008) Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates. Nano Lett 8:124–130CrossRefGoogle Scholar
  46. Kikuchi A, Okano T (2005) Nanostructured designs of biomedical materials: applications of cell sheet engineering to functional regenerative tissues and organs. J Control Release 101:69–84CrossRefGoogle Scholar
  47. Kim SB, Bae H, Cha JM, Moon SJ, Dokmeci MR, Cropek DM, Khademhosseini A (2011) A cell-based biosensor for real-time detection of cardiotoxicity using lensfree imaging. Lab Chip 11:1801–1807CrossRefGoogle Scholar
  48. Klauke N, Smith GL, Cooper J (2003) Stimulation of single isolated adult ventricular myocytes within a low volume using a planar microelectrode array. Biophys J 85:1766–1774CrossRefGoogle Scholar
  49. Kobuszewska A, Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Dybko A, Renaud P, Brzozka Z (2017) Heart-on-a-Chip: an investigation of the influence of static and perfusion conditions on cardiac (H9C2) cell proliferation, morphology, and alignment. SLAS Technol 22:536–546Google Scholar
  50. Kolesky DB, Homan KA, Skylar-Scott MA, Lewis JA (2016) Three-dimensional bioprinting of thick vascularized tissues. Proc Natl Acad Sci U S A 113:3179–3184CrossRefGoogle Scholar
  51. Kujala VJ, Pasqualini FS, Goss JA, Nawroth JC, Parker KK (2016) Laminar ventricular myocardium on a microelectrode array-based chip. J Mater Chem B 4:3534–3543CrossRefGoogle Scholar
  52. Lee SA, da No Y, Kang E, Ju J, Kim DS, Lee SH (2013) Spheroid-based three-dimensional liver-on-a-chip to investigate hepatocyte-hepatic stellate cell interactions and flow effects. Lab Chip 13:3529–3537CrossRefGoogle Scholar
  53. LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ (1995) Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol 269:H571–H582Google Scholar
  54. Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park SJ, Kotikian A, Nesmith AP, Campbell PH, Vlassak JJ, Lewis JA, Parker KK (2016) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16:303–308CrossRefGoogle Scholar
  55. Liu Y, Xia T, Wei J, Liu Q, Li X (2017) Micropatterned co-culture of cardiac myocytes on fibrous scaffolds for predictive screening of drug cardiotoxicities. Nanoscale. 9:4950–4962CrossRefGoogle Scholar
  56. Ma Z, Liu Q, Liu H, Yang H, Yun JX, Eisenberg C, Borg TK, Xu M, Gao BZ (2012) Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 12:566–573CrossRefGoogle Scholar
  57. MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46:257–263CrossRefGoogle Scholar
  58. Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23CrossRefGoogle Scholar
  59. Maksimov VF, Korostyshevskaya IM, Kurganov SA, Markel AL, Rudenko NS, Yacobson GS (2015) Changes in myoendocrine cells in rat right atrium at hypertension and during pharmacological lowering of blood pressure. Cell and Tissue Biology 9:30–39CrossRefGoogle Scholar
  60. Mannhardt I, Saleem U, Benzin A, Schulze T, Klampe B, Eschenhagen T, Hansen A (2017) Automated contraction analysis of human engineered heart tissue for cardiac drug safety screening. J Vis Exp. doi: 10.3791/55461 Google Scholar
  61. Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E, Cerino G, Redaelli A, Rasponi M (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610CrossRefGoogle Scholar
  62. Min M, Ollmar S, Gersing E (2003) Electrical impedance and cardiac monitoring - technology, potential and applications. Int J Bioelectromagn 5:53–56Google Scholar
  63. Mordwinkin NM, Burridge PW, Wu JC (2013) A review of human pluripotent stem cell-derived cardiomyocytes for high-throughput drug discovery, cardiotoxicity screening, and publication standards. J Cardiovasc Transl Res 6:22–30CrossRefGoogle Scholar
  64. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785CrossRefGoogle Scholar
  65. Natarajan A, Stancescu M, Dhir V, Armstrong C, Sommerhage F, Hickman JJ, Molnar P (2011) Patterned cardiomyocytes on microelectrode arrays as a functional, high information content drug screening platform. Biomaterials 32:4267–4274CrossRefGoogle Scholar
  66. Nguyen MD, Tinney JP, Ye F, Elnakib AA, Yuan F, El-Baz A, Sethu P, Keller BB, Giridharan GA (2015) Effects of physiologic mechanical stimulation on embryonic chick cardiomyocytes using a microfluidic cardiac cell culture model. Anal Chem 87:2107–2113CrossRefGoogle Scholar
  67. Nozaki Y, Honda Y, Tsujimoto S, Watanabe H, Kunimatsu T, Funabashi H (2014) Availability of human induced pluripotent stem cell-derived cardiomyocytes in assessment of drug potential for QT prolongation. Toxicol Appl Pharmacol 278:72–77CrossRefGoogle Scholar
  68. Oliveira MB, Neto AI, Correia CR, Rial-Hermida MI, Alvarez-Lorenzo C, Mano JF (2013) Superhydrophobic chips for cell spheroids high-throughput generation and drug screening. ACS Appl Mater Interfaces 6:9488–9495CrossRefGoogle Scholar
  69. Ota H, Yamamoto R, Deguchi K, Tanaka Y, Kazoe Y, Sato Y, Miki N (2010) Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sensors Actuat B 147:359–365CrossRefGoogle Scholar
  70. Ou D, Wang Q, Huang Y, Zeng D, Wei T, Ding L, Li X, Zheng Q, Jin Y (2016) Co-culture with neonatal cardiomyocytes enhances the proliferation of iPSC-derived cardiomyocytes via FAK/JNK signaling. BMC Dev Biol 16:11–22CrossRefGoogle Scholar
  71. Ozbolat IT (2015) Bioprinting scale-up tissue and organ constructs for transplantation. Trends Biotechnol 33:395–400CrossRefGoogle Scholar
  72. Qiu Y, Liao R, Zhang X (2008) Real-time monitoring primary cardiomyocyte adhesion based on electrochemical impedance spectroscopy and electrical cell-substrate impedance sensing. Anal Chem 80:990–996CrossRefGoogle Scholar
  73. Qiu Y, Liao R, Zhang X (2009) Intervention of cardiomyocyte death based on real-time monitoring of cell adhesion through impedance sensing. Biosens Bioelectron 25:147–153CrossRefGoogle Scholar
  74. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, Freed LE, Vunjak-Novakovic G (2004) Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc Natl Acad Sci U S A 101:18129–18134CrossRefGoogle Scholar
  75. Ralphe JC, de Lange WJ (2013) 3D engineered cardiac tissue models of human heart disease: learning more from our mice. Trends Cardiovasc Med 23:27–32CrossRefGoogle Scholar
  76. Ren L, Liu W, Wang Y, Wang JC, Tu Q, Xu J, Liu R, Shen SF, Wang J (2013) Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem 85:235–244CrossRefGoogle Scholar
  77. Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A (2016) Cardiovascular organ-on-a-Chip platforms for drug discovery and development. Appl In Vitro Toxicol 2:82–96CrossRefGoogle Scholar
  78. Richards DJ, Tan Y, Coyle R, Li Y, Xu R, Yeung N, Parker A, Menick DR, Tian B, Mei Y (2016) Nanowires and electrical stimulation synergistically improve functions of hIPSC cardiac spheroids. Nano Lett 16:4670–4678CrossRefGoogle Scholar
  79. Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRefGoogle Scholar
  80. Rogozhnikov D, O’Brien PJ, Elahipanah S, Yousaf MN (2016) Scaffold free bio-orthogonal assembly of 3-dimensional cardiac tissue via cell surface engineering. Sci Rep 6:39806–39816CrossRefGoogle Scholar
  81. Saini H, Navaei A, Van Putten A, Nikkhah M (2015) 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts. Adv Healthc Mater 4:1961–1971CrossRefGoogle Scholar
  82. Saric A, Andreau K, Armand AS, Moller IM, Petit PX (2016) Barth syndrome: from mitochondrial dysfunctions associated with aberrant production of reactive oxygen species to pluripotent stem cell studies. Front Genet 6:359–383CrossRefGoogle Scholar
  83. Schroer AK, Shotwell MS, Sidorov VY, Wikswo JP, Merryman WD (2017) I-Wire heart-on-a-chip II: biomechanical analysis of contractile, three-dimensional cardiomyocyte tissue constructs. Acta Biomater 48:79–87CrossRefGoogle Scholar
  84. Selimović S, Dokmeci MR, Khademhosseini A (2013) Organs-on-a-chip for drug discovery. Curr Opin Pharmacol 13:829–833CrossRefGoogle Scholar
  85. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic G (2009) Electrical stimulation of human embryonic stem cells: cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619CrossRefGoogle Scholar
  86. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, Kikuchi A, Umezu M, Okano T (2002) Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ Res 90:e40–e48CrossRefGoogle Scholar
  87. Shimizu T, Yamato M, Kikuchi A, Okano T (2003) Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 24:2309–2316CrossRefGoogle Scholar
  88. Shin SR, Zhang YS, Kim DJ, Manbohi A, Avci H, Silvestri A, Aleman J, Hu N, Kilic T, Keung W, Righi M, Assawes P, Alhadrami HA, Li RA, Dokmeci MR, Khademhosseini A (2016) Aptamer-based microfluidic electrochemical biosensor for monitoring cell-secreted trace cardiac biomarkers. Anal Chem 88:10019–10027CrossRefGoogle Scholar
  89. Sidorov VY, Samson PC, Sidorova TN, Davidson JM, Lim CC, Wikswo JP (2017) I-wire heart-on-a-chip I: three-dimensional cardiac tissue constructs for physiology and pharmacology. Acta Biomater 48:68–78CrossRefGoogle Scholar
  90. Simmons CS, Petzold BC, Pruitt BL (2012) Microsystems for biomimetic stimulation of cardiac cells. Lab Chip 12:3235–3248CrossRefGoogle Scholar
  91. Tanaka Y, Morishima K, Shimizu T, Kikuchi A, Yamato M, Okano T, Kitamori T (2007) Demonstration of a PDMS-based bio-microactuator using cultured cardiomyocytes to drive polymer micropillars. Lab Chip 6:230–235CrossRefGoogle Scholar
  92. Tandon N, Marsano A, Maidhof R, Numata K, Montouri-Sorrentino C, Cannizzaro C, Voldman J, Vunjak-Novakovic G (2010) Surface-patterned electrode bioreactor for electrical stimulation. Lab Chip 10:692–700CrossRefGoogle Scholar
  93. Tandon N, Marsano A, Maidhof R, Wan L, Park H, Vunjak-Novakovic G (2011) Optimization of electrical stimulation parameters for cardiac tissue engineering. J Tissue Eng Regen Med 5:e115–e125CrossRefGoogle Scholar
  94. Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mater Sci Eng C Mater Biol Appl 75:305–316CrossRefGoogle Scholar
  95. Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Brzozka Z (2018) Microsystem with micropillar array for three-(gel-embaded) and two-dimensional cardiac cell culture. Sensors Actuat B 254:973–983CrossRefGoogle Scholar
  96. Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, Pesce M, Soncini M (2016) On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnol Bioeng 113:859–869CrossRefGoogle Scholar
  97. Vacek TP, Metreveli N, Tyagi N, Vacek JC, Pagni S, Tyagi SC (2011) Electrical stimulation of cardiomyocytes activates mitochondrial matrix metalloproteinase causing electrical remodeling. Biochem Biophys Res Commun 404:762–766CrossRefGoogle Scholar
  98. Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M (2016) Cardiac meets skeletal: what’s new in microfluidic models for muscle tissue engineering. Molecules 21:e1128–e1148CrossRefGoogle Scholar
  99. Wei P, Taylor R, Ding Z, Chung C, Abilez OJ, Higgs G, Pruitt BL, Ziaie B (2011) Stretchable microelectrode array using room-temperature liquid alloy interconnects. J Micromech Microeng 21:054015CrossRefGoogle Scholar
  100. Werdich AA, Lima EA, Ivanov B, Ges I, Anderson ME, Wikswo JP, Baudenbacher FJ (2004) A microfluidic device to confine a single cardiac myocyte in a sub-nanoliter volume on planar microelectrodes for extracellular potential recordings. Lab Chip 4:357–362CrossRefGoogle Scholar
  101. Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 14:869–882CrossRefGoogle Scholar
  102. Yan J, Huang Y, Chrisey DB (2013) Laser-assisted printing of alginate long tubes and annular constructs. Biofabrication 5:015002CrossRefGoogle Scholar
  103. Yu F, Zhao Y, Gu J, Quigley KL, Chi NC, Tai YC, Hsiai TK (2012) Flexible microelectrode arrays to interface epicardial electrical signals with intracardial calcium transients in zebrafish hearts. Biomed Microdevices 14:357–366CrossRefGoogle Scholar
  104. Yue T, Nakajima M, Takeuchi M, Hu C, Huang Q, Fukuda T (2014) On-chip self-assembly of cell embedded microstructures to vascular-like microtubes. Lab Chip 14:1151–1161CrossRefGoogle Scholar
  105. Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N (2013a) Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 34:5813–5820Google Scholar
  106. Zhang X, Wang Q, Gablaski B, Zhang X, Lucchesi P, Zhao Y (2013b) A microdevice for studying intercellular electromechanical transduction in adult cardiac myocytes. Lab Chip 13:3090–3097Google Scholar
  107. Zhang X, Wang T, Wang P, Hu N (2016a) High-throughput assessment of drug cardiac safety using a high-speed impedance detection technology-based Heart-on-a-chip. Micromachines 7:122_1–122_9Google Scholar
  108. ​Zhang YS, Arneri A, Bersini S, Shin SR, Zhu K, Goli-Malekabadi Z, Aleman J, Colosi C, Busignani F, Dell'Erba V, Bishop C, Shupe T, Demarchi D, Moretti M, Rasponi M, Dokmeci MR, Atala A, Khademhosseini A (2016b) Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials 110:45–59Google Scholar
  109. Zhang B, Montgomery M, Chamberlain MD, Ogawa S, Korolj A, Pahnke A, Wells LA, Masse S, Kim J, Reis L, Momen A, Nunes SS, Wheeler AR, Nanthakumar K, Keller G, Sefton MV, Radisic M (2016c) Biodegradable scaffold with built-in vasculature for organ-on-a-chip engineering and direct surgical anastomosis. Nat Mater 15:669–678Google Scholar
  110. Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A (2016d) From Cardiac Tissue Engineering to Heart-on-a-Chip: Beating Challenges. Biomed Mater 10:1–21Google Scholar
  111. Zhang L, Xu MX, Yin QS, Zhu CY, Cheng XL, Ren YR, Zhuang PW, Zhang YJ, (2017) Screening, verification, and analysis of biomarkers for drug-induced cardiac toxicity in vitro based on RTCA coupled with PCR Array technology. Toxicol Lett 268:17–25Google Scholar
  112. ​Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A (2016) Adhesion of MRC 5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 37:536–544Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Chair of Medical Biotechnology, Faculty of ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations