Microfluidic Systems for Cardiac Cell Culture—Characterization

  • Elzbieta JastrzebskaEmail author
  • Zbigniew Brzozka


The microfluidic systems are designed especially for many biological applications. An Organ-on-a-chip system, used to mimic organ functions, is one type of such microsystems. Various organs, e.g., liver, skin, lung, or breast are investigated in microscale. The microsystems designed for heart cell culture and analysis (called Heart-on-a-chip) are also fabricated. In this chapter, a characterization of the microfluidic systems for cardiac cell culture is described. Interest in this research area stems from the fact that heart diseases are the most common cause of death around the world. Therefore, research issues concerning heart diseases are presented at the beginning of this chapter. Two approaches of investigating cardiac cells in microscale are shown: the creation of a beating heart culture model, which mimics heart tissue and the creation of a whole vascular system, which mimics blood flow in vessels. Specific properties, which have to be provided in Heart-on-a-chip systems, are also presented. Features such as: perfusion conditions, electrical field, stretching, hydrogels, and nanofibres are used to mimic a native myocardium. Additionally, heart cell culture in the microsystems is often used to simulate heart diseases and investigate heart regeneration using stem cells (SCs).


Cardiomyocytes Cardiovascular disease Heart-on-a-chip Heart regeneration Vascular system 



This work was realized with the frame of projects LIDER No. LIDER/026/573/L-4/12/NCBR/2013 and SONATA 5 program No. UMO-2013/09/D/ST5/03887.


  1. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New YorkGoogle Scholar
  2. An F, Qu Y, Liu X, Zhong R, Luo Y (2015) Organ-on-a-chip: new platform for biological analysis. Anal Chem Insights 10:39–45Google Scholar
  3. Annabi N, Selimovic S, Acevedo CoxP J, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13:3569–3577CrossRefGoogle Scholar
  4. Ashammakhi N, Ndreu A, Yang Y, Ylikuppila H, Nikkola L (2012) Nanofiber-based scaffolds for tissue engineering. Eur J Plast Surg 35:135–149CrossRefGoogle Scholar
  5. Balint R, Cassidy NJ, Cartmell SH (2012) Electrical stimulation: a novel tool for tissue engineering. Tissue Eng Part B Rev 19:48–57CrossRefGoogle Scholar
  6. Batalov I, Feinberg AW (2015) Differentiation of cardiomyocytes from human pluripotent stem cells using monolayer culture. Biomark Insights 10:71–76Google Scholar
  7. Beeres SL, Bengel FM, Bartunek J, Atsma DE, Hill JM, Vanderheyden M, Penicka M, Schalij MJ, Wijns W, Bax JJ (2007) Role imaging in cardiac stem cell therapy. J Am Coll Cardol 49:1137–1148CrossRefGoogle Scholar
  8. Bernstein HS, Srivastava D (2012) Stem cell therapy for cardiac disease. Pediatr Res 71:491–499CrossRefGoogle Scholar
  9. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772CrossRefGoogle Scholar
  10. Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93CrossRefGoogle Scholar
  11. Bray LJ, Binner M, Holzheu A, Friedrichs J, Freudenberg U, Hutmacher DW, Werner C (2015) Multi-parametric hydrogels support 3D in vitro bioengineered microenvironment models of tumour angiogenesis. Biomaterials 53:609–620CrossRefGoogle Scholar
  12. Cambria E, Steiger J, Günter J, Bopp A, Wolint P, Hoerstrup SP, Emmert MY (2016) Cardiac regenerative medicine: the potential of a new generation of stem cells. Transfus Med and Hemother 43:275–281CrossRefGoogle Scholar
  13. Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695:17–39CrossRefGoogle Scholar
  14. Cheng CP, Herfkens RJ, Taylor CA (2003) Inferior vena caval hemodynamics quantified in vivo at rest and during cycling exercise using magnetic resonance imaging. Am J Physiol Heart Circ Physiol 284:H1161–H1167CrossRefGoogle Scholar
  15. Dahl KN, Kalinowski A, Pekkan A (2010) Mechanobiology and the microcirculation: cellular, nuclear and fluid mechanics. Microcirculation 17:179–191CrossRefGoogle Scholar
  16. Doppler SA, Deutsch M-A, Lange R, Krane M (2013) Cardiac regeneration: current therapies-future concepts. J Thorac Dis 5:683–697Google Scholar
  17. Fryburg DA, Song DH, Laifenfeld D, de Graaf D (2014) Systems diagnostics: anticipating the next generation of diagnostic tests based on mechanistic insight into disease. Drug Discov Today 19:108–112CrossRefGoogle Scholar
  18. Garbern JC, Lee RT (2013) Cardiac stem cell therapy and the promise of heart regeneration. Cell Stem Cell 12:689–698CrossRefGoogle Scholar
  19. Ghafar-Zadeh E, Waldeise JR, Lee LP (2011) Engineered approaches to the stem cell microenvironment for cardiac tissue regeneration. Lab Chip 11:3031–3048CrossRefGoogle Scholar
  20. Guillemette MD, Park H, Hsiao JC, Jain SR, Larson R, Langer R, Freed LE (2010) Combined technologies for microfabricating elastomeric cardiac tissue engineering scaffolds. Macromol Biosci 10:1330–1337CrossRefGoogle Scholar
  21. Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RM (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231CrossRefGoogle Scholar
  22. Hasenberg T, Muhleder S, Dotzler A, Bauer S, Labuda K, Holnthoner W, Redl H, Lauster R, Marx U (2015) Emulating human microcapillaries in a multi-organ-chip platform. J Biotechnol 216:1–10CrossRefGoogle Scholar
  23. He J, Ma C, Liu W, Wang J (2014) On-chip monitoring of skeletal myoblast transplantation for the treatment of hypoxiainduced myocardial injury. Analyst 139:4482–4490CrossRefGoogle Scholar
  24. Hobbs FDR (2004) Cardiovascular disease: different strategies for primary and secondary prevention? Heart 90:1217–1223CrossRefGoogle Scholar
  25. Hoffman AS (2012) Hydrogels for biomedical applications. Adv Drug Deliver Rev 64:18–23CrossRefGoogle Scholar
  26. Hoyt JR, Seth M, Hanson I, Dixon S, Share D, Lalonde T, Wohns D, Moscucci M, Gurm HS (2013) Outcome of percutaneous coronary intervention following recent surgery. Am J Cardiol 112:1580–1585CrossRefGoogle Scholar
  27. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668CrossRefGoogle Scholar
  28. Iqbal J, Serruys PW, Taggart DP (2013) Optimal revascularization for complex coronary artery disease. Nat Rev Cardiol 10:635–647CrossRefGoogle Scholar
  29. Jastrzebska E, Tomecka E, Jesion I (2016) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81CrossRefGoogle Scholar
  30. Katt ME, Placone AL, Wong AD, Xu ZS, Searson PC (2016) In vitro tumor models: advantages, disadvantages, variables, and selecting the right platform. Front Bioeng Biotchnol 4:1–14Google Scholar
  31. Kobuszewska A, Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Dybko A, Renaud P, Brzozka Z (2017) Heart-on-a-chip: an investigation of the influence of static and perfusion conditions on cardiac (H9C2) cell proliferation, morphology, and alignment. SLAS Technol. doi: 10.1177/2472630317705610 Google Scholar
  32. Kozar-Kaminska K (2012) Regeneracja serca. Postepy w Kardiologii Interwencyjnej 8:308–314Google Scholar
  33. Laflamme MA, Murry ChE (2011) Heart regeneration. Nature 473:326–335CrossRefGoogle Scholar
  34. Lee J, Razu ME, Wang X, Lacerda C, Kim JJ (2015) Biomimetic cardiac microsystems for pathophysiological studies and drug screens. J Lab Autom 20:96–106CrossRefGoogle Scholar
  35. Li YS, Haga JH Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38:1949–1971Google Scholar
  36. Lovell MJ, Mathur A (2010) Cardiac stem cell therapy: progress from the bench to bedside. Heart 96:1531–1537CrossRefGoogle Scholar
  37. Lundin A, Djärv T, Engdahl J, Hollenberg J, Nordberg P, Ravn-Fischer A, Ringh M, Rysz S, Svensson L, Herlitz J, Lundgren P (2016) Drug therapy in cardiac arrest: a review of the literature. Eur Heart J Cardiovasc Pharmacother 2:54–75CrossRefGoogle Scholar
  38. Ma Z, Lu Q, Liu H, Yang H, Yun J, Eisenberg C, Borg TK, Xu M, Gao BZ (2012) Laser-patterned stem-cell bridges in a cardiac muscle model for on-chip electrical conductivity analyses. Lab Chip 12:566–573CrossRefGoogle Scholar
  39. Maidhof R, Tandon N, Lee EJ, Luo J, Duan Y, Yeager K, Konofagou E, Vunjak-Novakovic G (2012) Biomimetic perfusion and electrical stimulation applied in concert improved the assembly of engineered cardiac tissue. J Tissue Eng Regen Med 6:e12–e23CrossRefGoogle Scholar
  40. Mampuya WM (2012) Cardiac rehabilitation past, present and future: an overview. Cardiovasc Diagn Ther 2:38–49Google Scholar
  41. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:1–7CrossRefGoogle Scholar
  42. Mehling M, Tay S (2014) Microfluidic cell culture. Curr Opin Biotechnol 25:95–102CrossRefGoogle Scholar
  43. Moraes C, Chen J, Sun Y, Simmons CA (2010) Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation. Lab Chip 10:227–234CrossRefGoogle Scholar
  44. Morgan JP, Delnero PF, Zheng Y, Verbridge SS, Chen J, Craven M, Choi NW, Diaz-Santana A, Kermani P, Hempstead B, Lopez JA, Corso TN, Fischbach C, Stroock AD (2013) Formation of microvascular networks in vitro. Nat Protoc 8:1820–1836CrossRefGoogle Scholar
  45. Motlhagh D, Hartman TJ, Desai TA, Russell B (2003) Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. J Biomed Mater Res A 67:148–157CrossRefGoogle Scholar
  46. Nadal-Ginard B, Ellison GM, Torella D (2014) The cardiac stem cell compartment is indispensable for myocardial cell homeostasis, repair and regeneration in the adult. Stem Cell Res 13:615–630CrossRefGoogle Scholar
  47. Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther 163:94–108CrossRefGoogle Scholar
  48. Pittman RN (2011) The circulation system and oxygen transport. Regulation of tissue oxygenation. San Rafael (CA), Morgan & Claypool Life Sciences, pp 3–16Google Scholar
  49. Ren L, Liu W, Wang Y, Wang JC, Tu Q, Xu J, Liu R, Shen SF, Wang J (2013) Investigation of hypoxia-induced myocardial injury dynamics in a tissue interface mimicking microfluidic device. Anal Chem 85:235–244CrossRefGoogle Scholar
  50. Ribas J, Sadeghi H, Manbachi A, Leijten J, Brinegar K, Zhang YS, Ferreira L, Khademhosseini A (2016) Cardiovascular organ-on-a-chip platforms for drug discovery and development. Appl Vitro Toxicol 2:82–96CrossRefGoogle Scholar
  51. Rossi M, Lindken R, Hierck BP, Westerweel J (2009) Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow. Lab Chip 9:1403–1411CrossRefGoogle Scholar
  52. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefGoogle Scholar
  53. Salyers KL (2009) Preclinical pharmacokinetic models for drug discovery and development. In: Pearson P, Wienkers L (eds) Handbook of drug metabolism, 2nd edn. Informa Healthcare, New York, pp 659–673Google Scholar
  54. Schaaf S, Shibamiya A, Mewe M, Eder A, Stohr A, Hirt MN, Rau T, Zimmermann WH, Conradi L, Eschenhagen T, Hansen A (2011) Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology. PLoS One 6:e26397-1–e26397-11Google Scholar
  55. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, Vunjak-Novakovic NG (2009) Electrical stimulation of human embryonic stem cells: Cardiac differentiation and the generation of reactive oxygen species. Exp Cell Res 315:3611–3619CrossRefGoogle Scholar
  56. Sheng CC, Zhou L, Hao J (2013) Current stem cell delivery methods for myocardial repair. Biomed Res Int 547902:1–15Google Scholar
  57. Simmons CS, Petzold BC, Pruitt BL (2012) Microsystems for biomimetic stimulation of cardiac cells. Lab Chip 12:3235–3248CrossRefGoogle Scholar
  58. Sondergaard CS, Mathews G, Wang L, Jeffreys A, Sahota A, Wood M, Ripplinger CM, Si MS (2012) Contractile and electrophysiologic characterisation of optimalized self-organizing engineered heart tissue. Ann Thorac Surg 94:1241–1248CrossRefGoogle Scholar
  59. Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:1–32CrossRefGoogle Scholar
  60. Tomecka E, Wojasinski M, Jastrzebska E, Chudy M, Ciach T, Brzozka Z (2017) Poly(l-lactic acid) and polyurethane nanofibers fabricated by solution blow spinning as potential substrates for cardiac cell culture. Mat Sci Eng C 75:305–316CrossRefGoogle Scholar
  61. Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Brzozka Z (2018) Microsystem with micropillar array for three-(gel-embaded) and two-dimensional cardiac cell culture. Sensor Actuat B-Chem B 254:973–983CrossRefGoogle Scholar
  62. Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M (2016) Cardiac meets skeletal: what’s new in microfluidic models for muscle tissue engineering. Molecules 21:E1128-1- E1128-22Google Scholar
  63. Wong KH, Chan JM, Kamm RD, Tien J (2012) Microfluidic models of vascular functions. Annu Rev Biomed Eng 14:205–230CrossRefGoogle Scholar
  64. World CJ, Garin G, Berk B (2006) Vascular shear stress and activation of inflammatory genes. Curr Atheroscler Rep 8:240–244Google Scholar
  65. World Health Organisation (2014) Global status report on noncommunicable disease. WHO library cataloguing-in-publication data. ISBN 978 92 4 156485 4Google Scholar
  66. Xiao Y, Zhang B, Liu H, Miklas JW, Gagliardi M, Pahnke A, Thavandiran N, Sun Y, Simmons C, Keller G, Radisic M (2014) Microfabricated perfusable cardiac biowire: a platform that mimics native cardiac bundle. Lab Chip 14:869–882CrossRefGoogle Scholar
  67. Yamada KM, Cukierman E (2007) Modeling tissue morphogenesis and cancer in 3D. Cell 130:601–610CrossRefGoogle Scholar
  68. Yan Y, Yang X, Zou J, Jia C, Hu Y, Du H, Wang H (2015) Evaluation of photodynamic therapy efficiency using an in vitro three-dimensional microfluidic breast cancer tissue model. Lab Chip 15:735–744CrossRefGoogle Scholar
  69. Yang H, Ma Z (2012) Microsystem for stem cell-based cardiovascular research. BioNanoScience 2:305–315CrossRefGoogle Scholar
  70. Young E, Simmon C (2009) Macro- and microscale fluid flow systems for endothelial cell biology. Lab Chip 10:143–160CrossRefGoogle Scholar
  71. Young EW (2013) Cells, tissues, and organs on chips: challenges and opportunities for the cancer tumor microenvironment. Integr Biol (Camb) 5:1096–1109CrossRefGoogle Scholar
  72. Zhang D, Luo G, Xinxin D, Lu Ch (2012) Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharm Sin B 2:549–561CrossRefGoogle Scholar
  73. Zhang Y, Mignone J, MacLellan WR (2015) Cardiac regeneration and stem cells. Physiol Rev 95:1189–1204CrossRefGoogle Scholar
  74. Zhang YS, Aleman J, Arneri A, Bersini S, Piraino F, Shin SR, Dokmeci MR, Khademhosseini A (2016a) From cardiac tissue engineering to Heart-on-a-Chip: beating challenges. Biomed Mater 10:034006-1–034006-21Google Scholar
  75. Zhang X, Li L, Luo C (2016b) Gel integration for microfluidic applications. Lab Chip 16:1757–1776CrossRefGoogle Scholar
  76. Ziolkowska K, Kwapiszewski R, Brzozka Z (2011) Microfluidic devices as tolls for mimicking the in vivo environment. New J Chem 35:979–990CrossRefGoogle Scholar
  77. Zuppinger C (2016) 3D culture for cardiac cells. Biochim Biophys Acta 1863:1873–1881CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.The Chair of Medical Biotechnology, Faculty of ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations