Skip to main content

Microfluidic Systems

  • Chapter
  • First Online:
Cardiac Cell Culture Technologies

Abstract

Microfluidic technology has a great application potential in many fields of science such as analytical chemistry, molecular biology, or biotechnology. The microfluidic systems are also widely used for cell engineering. The microsystems have several advantages comparing with the traditional analysis, such as: using small volumes of reagents, low power consumption, flexibility, and adaptability to different experimental conditions and purposes. Additionally, in vivo conditions can be better mimicked in the microsystems than in conventional culture methods. In this chapter, the microfluidic systems for cellular application are described. We present important parameters of the microdevices, which have the greatest impact on the cell behavior. The advantages and disadvantages of using the microfluidic systems are also extensively discussed. Furthermore, we characterize some cellular models (static and perfusion; monolayer and spatial) developed in the microsystems. This chapter is an overview of basics of the microfluidic systems for cellular application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed D, Mao X, Juluri BK, Huang TJ (2009) A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid Nanofluid 7:727–731

    Article  Google Scholar 

  • Ahn K, Kima SH, Lee GH, Lee S, Heo YS, Park JY (2016) Features of microsystems for cultivation and characterization of stem cells with the aim of regenerative therapy. Stem Cells Int 2016:6023132_1–6023132_13

    Google Scholar 

  • Altinagac E, Taskin S, Kizil H (2016) Single cell array impedance analysis in a microfluidic device. JPCS 757:012010

    Google Scholar 

  • Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sensor Actuat B-Chem 79:207–215

    Article  Google Scholar 

  • Becker H, Hansen-Hagge T, Kurtz A, Mrowka R, Wölfl S, Gärtner C (2017) Microfluidic devices for stem-cell cultivation, differentiation and toxicity testing. Paper presented at the SPIE BiOS, BioMEMS and medical microsystems XV, San Francisco, 28 Feb 2017

    Google Scholar 

  • Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93

    Article  Google Scholar 

  • Brennan MD, Rexius-Hall ML, Elgass LJ, Eddington DT (2014) Oxygen control with microfluidics. Lab Chip 14:4305–4318

    Article  Google Scholar 

  • Cho S, Joon JY (2017) Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotech 45:34–42

    Article  Google Scholar 

  • Costa EC, Moreira AF, de Melo-Diogo D, Gaspar VM, Carvalho MP, Coreia IJ (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34:1427–1441

    Article  Google Scholar 

  • Dodge A, Brunet E, Chen S, Goulpeau J, Labas V, Vinh J, Tabeling P (2006) PDMS-based microfluidics for proteomic analysis. Analyst 131:1122–1128

    Article  Google Scholar 

  • Fu AY, Spence C, Sherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17:1109–1111

    Article  Google Scholar 

  • Gan W, Zhuang B, Zhang P, Han J, Li CX, Liu P (2014) A filter paper-based microdevice for low-cost, rapid, and automated DNA extraction and amplification from diverse sample types. Lab Chip 14:3719–3728

    Article  Google Scholar 

  • Grabowska I, Chudy M, Dybko A, Brzozka Z (2008) Uric acid determination in a miniaturized flow system with dual optical detection. Sensor Actuat B-Chem 130:508–513

    Article  Google Scholar 

  • Halldorsson S, Lucumi E, Gomez-Sjoberg R, Fleming RMT (2015) Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 63:218–231

    Article  Google Scholar 

  • Harrison DJ, Fluri K, Seiler K, Fan Z, Effenhauser C, Manz A (1993) Micromachining a miniaturized capillary electrophoresis-based chemical analysis system on a chip. Science 261:895–897

    Article  Google Scholar 

  • Hashimoto M, Tong R, Kohane DS (2013) Microdevices of nanomedicine. Mol Pharmaceut 10:2127–2144

    Article  Google Scholar 

  • Hong CC, Choi JW, Ahn CH (2001) A novel in-plane passive micromixer using Coanda effect. In: Ramsey JM, van den Berg A (eds) Proceedings of the 5th micro total analysis systems μTAS symposium, Monterey, 21–25 Oct 2001

    Google Scholar 

  • Husain AA, Starita C, Hodgetts A, Marshal J (2010) Macromolecular diffusion characteristics of ageing human Bruch’s membrane: implications for age-related macular degeneration (AMD). Exp Eye Res 90:703–710

    Article  Google Scholar 

  • Jastrzebska E, Bazylinska U, Bulka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzozka Z (2016a) Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. Biomicrofluidics 10:014116-1–014116-15

    Article  Google Scholar 

  • Jastrzebska E, Tomecka E, Jesion I (2016b) Heart-on-a-chip based on stem cell biology. Biosens Bioelectron 75:67–81

    Article  Google Scholar 

  • Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Strock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316

    Article  Google Scholar 

  • Kakac S, Kosoy B, Li D, Pramuanjaroenkij A (eds) (2010) Microfluidics based microsystems fundamentals and applications. Springer, Dordrecht

    Google Scholar 

  • Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11:1775–1781

    Article  Google Scholar 

  • Kim L, Toh YC, Voldman J, Yu H (2007) A practical guide to microfluidic perfusion culture of adherent mammalian cells. Lab Chip 7:681–694

    Article  Google Scholar 

  • Leclerc E, Sakai Y, Fujii T (2003) Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5:109–114

    Article  Google Scholar 

  • Lee WB, Weng CH, Cheng FY, Yeh CS, Lei HY, Lee GB (2008) Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system. Biomed Microdevices 11:161–171

    Article  Google Scholar 

  • Lee JS, Romero R, Han YM, Kim HC, Kimj CJ, Hong JS, Huh D (2016) Placenta-on-a-chip: a novel platform to study the biology of the human placenta. J Matern-Fetal Neo M 29:1046–1057

    Article  Google Scholar 

  • Lin CH, Tsai CH, Fu LM (2005) A rapid threedimensional vortex micromixer utilizing self-rotation effects under low Reynolds number conditions. J Micromech Microeng 15:935

    Article  Google Scholar 

  • Liu RH, Stremler MA, Sharp KV, Olsen MG, Santiago JG, Adrian RJ, Aref H, Beebe DJ (2000) Passive mixing in a three-dimensional serpentine microchannel. J Microelectromech Syst 9:190–197

    Article  Google Scholar 

  • Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem 1:423–449

    Article  Google Scholar 

  • Minerick AR, Swalm DC (2008) The rapidly growing field of micro and nanotechnology to measure living cells. AIChE J 54:2230–2237

    Article  Google Scholar 

  • Nguyen NT, Shaegh SAM, Kashaninejad N, Phan DT (2013) Design, fabrication and characterization of drug delivery systems based on a lab on a chip technology. Adv Drug Deliver Rev 65:1403–1419

    Article  Google Scholar 

  • Niu X, Lee YK (2003) Efficient spatial-temporal chaotic mixing in microchannels. J Micromech Microeng 13:454

    Article  Google Scholar 

  • Novotny J, Foret F (2017) Fluid manipulation on the micro-scale: basic of fluid behavior in microfluidics. J Sep Sci 40:383–394

    Article  Google Scholar 

  • Oh DW, Jin JS, Choi JH, Kim HY, Lee JS (2007) A microfluidic chaotic mixer using ferrofluid. J Micromech Microeng 17:2077

    Article  Google Scholar 

  • Oliviera AF, Pessoa ACSN, Bastos RG, de la Torre LG (2016) Microfluidic tools toward industrial biotechnology. Biotechnol Prog 32:1372–1389

    Article  Google Scholar 

  • Reif RD, Aguas C, Martinez MM, Pappas D (2010) Temporal dynamics of receptor-induced apoptosis in an affinity microdevice. Anal Bioanal Chem 397:3387–3396

    Article  Google Scholar 

  • Song JW, Munn LL (2011) Fluid forces control endothelial sprouting. Proc Natl Acad Sci 108:15342–15347

    Article  Google Scholar 

  • Sung KE, Beebe DJ (2014) Microfluidic 3D models of cancer. Adv Drug Deliver Rev 78–79:68–78

    Article  Google Scholar 

  • Terry SC, Jerman JH, Angell JB (1979) A gas chromatographic air analyzer fabricated on a silicon wafer. IEEE T Electron Dev 26:1880–1886

    Article  Google Scholar 

  • Tian WCh, Finehout E (eds) (2008) Microfluidics for biological applications. Springer, New York

    Google Scholar 

  • Tomecka E, Zukowski K, Jastrzebska E, Chudy M, Brzozka Z (2018) Microsystem with micropillar array for three- (gel-embaded) and two-dimensional cardiac cell culture. Sensor Actuat B-Chem B 254:973–983

    Article  Google Scholar 

  • Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97

    Article  Google Scholar 

  • Wang Y, Zhe J, Chung BTF, Dutta P (2007) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4:375–389

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Woolley A, Mathies R (1994) Ultra-high-speed DNA fragment separations using microfabricated capillary array electrophoresis chips. Proc Natl Acad Sci USA 91:11348–11352

    Article  Google Scholar 

  • Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956

    Article  Google Scholar 

  • Wu J, Chen Q, Liu W, He Z, Lin JM (2017) Recent advances in microfluidic 3D cellular scaffold for drug assays. TrAC 87:19–31

    Google Scholar 

  • Young EWK, Beebe DJ (2010) Fundamentals of microfluidic cell culture in controlled microenvironments. Cheml Soc Rev 39:1036–1048

    Article  Google Scholar 

  • Zhang Y, Ge S, Yu J (2016) Chemical and biochemical analysis on lab-on-a-chip devices fabricated using three-dimensional printing. TrAC 85:166–180

    Google Scholar 

  • Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z (2016) Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 37:537–544

    Article  Google Scholar 

  • Zuchowska A, Kwapiszewska K, Chudy M, Dybko A, Brzozka Z (2017) Studies of anticancer drug cytotoxicity based on long-term HepG2 spheroid culture in a microfluidic system. Electrophoresis 38:1206–1216

    Article  Google Scholar 

Download references

Acknowledgements

This work was realized with the frame of project SONATA 5 program No. UMO-2013/09/D/ST5/03887.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Skorupska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Skorupska, S., Jastrzebska, E., Chudy, M., Dybko, A., Brzozka, Z. (2018). Microfluidic Systems. In: Brzozka, Z., Jastrzebska, E. (eds) Cardiac Cell Culture Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-70685-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70685-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70684-9

  • Online ISBN: 978-3-319-70685-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics