Advertisement

Resolving Range Violations in DBpedia

  • Piyawat Lertvittayakumjorn
  • Natthawut Kertkeidkachorn
  • Ryutaro Ichise
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10675)

Abstract

DBpedia, a large-scale multi-disciplinary knowledge graph extracted from structured data in Wikipedia, is an essential part of the Linked Open Data (LOD). However, several previous works report many types of errors existing in DBpedia. The crucial one is a range violation error – a problem when an object of a triple does not have a type required by the range of the triple’s predicate. This inconsistency could undermine the effectiveness of any applications using DBpedia. In this paper, we aim to correct these erroneous triples by finding correct objects with the required type to replace the incorrect objects. Our approach is based on graph analysis and keyword matching. It also exploits information from the incorrect objects because, despite their incorrectness, they contain useful clues to find the correct objects. The results from eight different datasets show that our proposed approach outperforms various baseline methods, including entity search (e.g., Soft-TFIDF and DBpedia Lookup) and knowledge graph completion (TransE and AMIE+).

Keywords

DBpedia Linked data Data quality Error correction Range violation error Knowledge graph refinement 

References

  1. 1.
    Adamson, G.W., Boreham, J.: The use of an association measure based on character structure to identify semantically related pairs of words and document titles. Inf. Storage Retr. 10(7–8), 253–260 (1974)CrossRefMATHGoogle Scholar
  2. 2.
    Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-76298-0_52 CrossRefGoogle Scholar
  3. 3.
    Bordes, A., Usunier, N., Garcia-Durán, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: 26th NIPS, pp. 2787–2795. Curran Associates Inc., USA (2013)Google Scholar
  4. 4.
    Cohen, W.W., Ravikumar, P., Fienberg, S.E.: A comparison of string distance metrics for name-matching tasks. In: The Workshop on IIWeb, pp. 73–78 (2003)Google Scholar
  5. 5.
    Damerau, F.J.: A technique for computer detection and correction of spelling errors. Commun. ACM 7(3), 171–176 (1964)CrossRefGoogle Scholar
  6. 6.
    DBpedia: Dbpedia 2016–04 statistics. http://wiki.dbpedia.org/dbpedia-2016-04-statistics. Accessed 13 May 2017
  7. 7.
    Dimou, A., Kontokostas, D., Freudenberg, M., Verborgh, R., Lehmann, J., Mannens, E., Hellmann, S., Van de Walle, R.: Assessing and refining mappings to RDF to improve dataset quality. In: 14th ISWC, pp. 133–149 (2015)Google Scholar
  8. 8.
    Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with amie+. VLDB J. 24(6), 707–730 (2015)CrossRefGoogle Scholar
  9. 9.
    Gali, N., Mariescu-Istodor, R., Frnti, P.: Similarity measures for title matching. In: 23rd ICPR, pp. 1548–1553 (2016)Google Scholar
  10. 10.
    Gangemi, A., Nuzzolese, A.G., Presutti, V., Draicchio, F., Musetti, A., Ciancarini, P.: Automatic typing of DBpedia entities. In: Cudré-Mauroux, P., et al. (eds.) ISWC 2012. LNCS, vol. 7649, pp. 65–81. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-35176-1_5 CrossRefGoogle Scholar
  11. 11.
    Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)Google Scholar
  12. 12.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S., et al.: Dbpedia-a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)Google Scholar
  13. 13.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: 29th AAAI, pp. 2181–2187. AAAI Press (2015)Google Scholar
  14. 14.
    Liu, S., d’Aquin, M., Motta, E.: Towards linked data fact validation through measuring consensus. In: 2nd Workshop on LDQ (2015)Google Scholar
  15. 15.
    Ma, Y., Gao, H., Wu, T., Qi, G.: Learning disjointness axioms with association rule mining and its application to inconsistency detection of linked data. In: Zhao, D., Du, J., Wang, H., Wang, P., Ji, D., Pan, J.Z. (eds.) CSWS 2014. CCIS, vol. 480, pp. 29–41. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-45495-4_3 Google Scholar
  16. 16.
    Paulheim, H.: Data-driven joint debugging of the dbpedia mappings and ontology. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 404–418. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58068-5_25 CrossRefGoogle Scholar
  17. 17.
    Paulheim, H.: Knowledge graph refinement: a survey of approaches and evaluation methods. Semant. Web 8(3), 489–508 (2017)CrossRefGoogle Scholar
  18. 18.
    Paulheim, H., Bizer, C.: Improving the quality of linked data using statistical distributions. IJSWIS 10(2), 63–86 (2014)Google Scholar
  19. 19.
    Paulheim, H., Gangemi, A.: Serving DBpedia with DOLCE – more than just adding a cherry on top. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 180–196. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-25007-6_11 CrossRefGoogle Scholar
  20. 20.
    Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P.: Fixing the domain and range of properties in linked data by context disambiguation. In: 8th LDOW (2015)Google Scholar
  21. 21.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: 28th AAAI, pp. 1112–1119. AAAI Press (2014)Google Scholar
  22. 22.
    Wienand, D., Paulheim, H.: Detecting incorrect numerical data in DBpedia. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) ESWC 2014. LNCS, vol. 8465, pp. 504–518. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-07443-6_34 CrossRefGoogle Scholar
  23. 23.
    Xiao, H., Huang, M., Zhu, X.: From one point to a manifold: knowledge graph embedding for precise link prediction. In: 25th IJCAI, pp. 1315–1321 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Piyawat Lertvittayakumjorn
    • 1
    • 2
  • Natthawut Kertkeidkachorn
    • 2
    • 3
  • Ryutaro Ichise
    • 2
    • 3
  1. 1.Department of ComputingImperial College LondonLondonUK
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.SOKENDAI (The Graduate University for Advanced Studies)TokyoJapan

Personalised recommendations