Reasoning on Context-Dependent Domain Models

  • Stephan BöhmeEmail author
  • Thomas KühnEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10675)


Modelling context-dependent domains is hard, as capturing multiple context-dependent concepts and constraints easily leads to inconsistent models or unintended restrictions. However, current semantic technologies not yet support reasoning on context-dependent domains. To remedy this, we introduced ConDL, a set of novel description logics tailored to reason on contextual knowledge, as well as JConHT, a dedicated reasoner for ConDL ontologies. ConDL enables reasoning on the consistency and satisfiability of context-dependent domain models, e.g., Compartment Role Object Models (CROM). We evaluate the suitability and efficiency of our approach by reasoning on a modelled banking application and measuring the performance on randomly generated models.


  1. 1.
    Ahmad, M.A., Nadeem, A.: Consistency checking of UML models using description logics: a critical review. In: Proceedings of the ICET 2010, pp. 310–315 (2010)Google Scholar
  2. 2.
    Baader, F., et al. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications, 2nd edn. Cambridge University Press, Cambridge (2007)zbMATHGoogle Scholar
  3. 3.
    Baader, F., et al.: Context-dependent views to axioms and consequences of semantic web ontologies. J. Web Semant. 12, 22–40 (2012)CrossRefGoogle Scholar
  4. 4.
    Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell. 168(1–2), 70–118 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bertossi, L., Milani, M.: The ontological multidimensional data model in quality data specification and extraction. In: Calì, A., Wood, P., Martin, N., Poulovassilis, A. (eds.) BICOD 2017. LNCS, vol. 10365, pp. 126–130. Springer, Cham (2017). CrossRefGoogle Scholar
  6. 6.
    Böhme, S., Lippmann, M.: Decidable description logics of context with rigid roles. In: Proceedings of the FroCoS 2015, pp. 17–32 (2015)Google Scholar
  7. 7.
    Calì, A., Calvanese, D., Giacomo, G., Lenzerini, M.: A formal framework for reasoning on UML class diagrams. In: Hacid, M.-S., Raś, Z.W., Zighed, D.A., Kodratoff, Y. (eds.) ISMIS 2002. LNCS (LNAI), vol. 2366, pp. 503–513. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  8. 8.
    Ceylan, I.I., Peñaloza, R.: The bayesian ontology language \(\cal{BEL}\). J. Autom. Reasoning 58(1), 67–95 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, P.P.S.: The entity-relationship model toward a unified view of data. ACM Trans. Database Syst. (TODS) 1(1), 9–36 (1976)CrossRefGoogle Scholar
  10. 10.
    Genovese, V.: A meta-model for roles: introducing sessions. In: Proceedings of the Ws. on Roles and Relationships in OOP, Multiagent Systems, and Ontologies, pp. 27–38 (2007)Google Scholar
  11. 11.
    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an OWL 2 reasoner. J. Autom. Reasoning 53(3), 245–269 (2014)CrossRefzbMATHGoogle Scholar
  12. 12.
    Guizzardi, G., Wagner, G.: Conceptual simulation modeling with Onto-UML. In: Proceedings of the Winter Simulation Conference, p. 5 (2012)Google Scholar
  13. 13.
    Halpin, T.: Object-role modeling (ORM/NIAM). In: Bernus, P., Mertins, K., Schmidt, G. (eds.) Handbook on Architectures of Information Systems, pp. 81–103. Springer, Heidelberg (2006). Google Scholar
  14. 14.
    Hennicker, R., Klarl, A.: Foundations for ensemble modeling – the Helena approach. In: Iida, S., Meseguer, J., Ogata, K. (eds.) Specification, Algebra, and Software. LNCS, vol. 8373, pp. 359–381. Springer, Heidelberg (2014). CrossRefGoogle Scholar
  15. 15.
    Klarman, S., Gutiérrez-Basulto, V.: Description logics of context. J. Logic Comput. 26(3), 817–854 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Kühn, T., Leuthäuser, M., Götz, S., Seidl, C., Aßmann, U.: A metamodel family for role-based modeling and programming languages. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE 2014. LNCS, vol. 8706, pp. 141–160. Springer, Cham (2014). Google Scholar
  17. 17.
    Kühn, T., et al.: A combined formal model for relational context-dependent roles. In: Proceedings of the SLE 2015, pp. 113–124 (2015)Google Scholar
  18. 18.
    Liu, M., Hu, J.: Information networking model. In: Laender, A.H.F., Castano, S., Dayal, U., Casati, F., Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp. 131–144. Springer, Heidelberg (2009). CrossRefGoogle Scholar
  19. 19.
    Motik, B., Shearer, R., Horrocks, I.: Hypertableau reasoning for description logics. J. Artif. Intell. Res. 36, 165–228 (2009)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Parsia, B., et al.: The OWL reasoner evaluation (ORE) 2015 competition report. In: Proceedings of the SSWS 2015, co-located with ISWC 2015, pp. 2–15 (2015)Google Scholar
  21. 21.
    Rumbaugh, J., Jacobson, R., Booch, G.: The Unified Modelling Language Reference Manual, 1st edn. Addison-Wesley, USA (1999)Google Scholar
  22. 22.
    Serafini, L., Homola, M.: Contextualized knowledge repositories for the semantic web. J. Web Semant. 12, 64–87 (2012)CrossRefGoogle Scholar
  23. 23.
    Sheng, Q.Z., et al.: Contextuml: A UML-based modeling language for model-driven development of context-aware web services. In: Proceedings of the ICMB 2005, pp. 206–212 (2005)Google Scholar
  24. 24.
    Simmonds, J., Straeten, R.V.D., Jonckers, V., Mens, T.: Maintaining consistency between UML models using description logic. L’Objet 10(2–3), 231–244 (2004)Google Scholar
  25. 25.
    Simmonds, J., et al.: A tool based on DL for UML model consistency checking. Int. J. Softw. Eng. Knowl. Eng. 18(6), 713–735 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Chair of Automata TheoryTU DresdenDresdenGermany
  2. 2.Software Technology GroupTU DresdenDresdenGermany

Personalised recommendations