Mining Inverse and Symmetric Axioms in Linked Data

  • Rajeev Irny
  • P. Sreenivasa Kumar
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10675)


In the context of Linked Open Data, substantial progress has been made in mining of property subsumption and equivalence axioms. However, little progress has been made in determining if a predicate is symmetric or if its inverse exists within the data. Our study of popular linked datasets such as DBpedia, YAGO and their associated ontologies has shown that they contain very few inverse and symmetric property axioms. The state-of-the-art approach ignores the open-world nature of linked data and involves a time-consuming step of preparing the input for the rule-miner. To overcome these shortcomings, we propose a schema-agnostic unsupervised method to discover inverse and symmetric axioms from linked datasets. For mining inverse property axioms, we find that other than support and confidence scores, a new factor called predicate-preference factor (ppf) is useful and setting an appropriate threshold on ppf helps in mining quality axioms. We also introduce a novel mechanism, which also takes into account the semantic-similarity of predicates to rank-order candidate axioms. Using experimental evaluation, we show that our method discovers potential axioms with good accuracy.


Ontology learning Property axioms Rule mining Semantic similarity 


  1. 1.
    Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. Am. Statist. 52(2), 119–126 (1998)MathSciNetGoogle Scholar
  2. 2.
    Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Web Semant. Sci. Serv. Agents World Wide Web 7(3), 154–165 (2009)CrossRefGoogle Scholar
  3. 3.
    Borgelt, C., Kruse, R.: Induction of association rules: apriori implementation. In: Härdle, W., Rönze, B. (eds.) Compstat, pp. 395–400. Physica, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI, vol. 16, p. 435 (2004)Google Scholar
  5. 5.
    De Nies, T., et al.: Normalized semantic web distance. In: Sack, H., Blomqvist, E., d’Aquin, M., Ghidini, C., Ponzetto, S.P., Lange, C. (eds.) ESWC 2016. LNCS, vol. 9678, pp. 69–84. Springer, Cham (2016). CrossRefGoogle Scholar
  6. 6.
    Etzioni, O., Fader, A., Christensen, J., Soderland, S.: Mausam: open information extraction: the second generation. In: IJCAI, vol. 11, pp. 3–10 (2011)Google Scholar
  7. 7.
    Fleischhacker, D., Völker, J., Stuckenschmidt, H.: Mining RDF data for property axioms. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7566, pp. 718–735. Springer, Heidelberg (2012). CrossRefGoogle Scholar
  8. 8.
    Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24, 707–730 (2015). SpringerCrossRefGoogle Scholar
  9. 9.
    Galárraga, L.A., Preda, N., Suchanek, F.M.: Mining rules to align knowledge bases. In: Proceedings of the 2013 Workshop on Automated Knowledge Base Construction, pp. 43–48. ACM (2013)Google Scholar
  10. 10.
    Jenks, G.: The data model concept in statistical mapping. Int. Yearb. Cartogr. 7, 186–190 (1967)Google Scholar
  11. 11.
    Koutraki, M., Preda, N., Vodislav, D.: Online relation alignment for linked datasets. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017. LNCS, vol. 10249, pp. 152–168. Springer, Cham (2017). CrossRefGoogle Scholar
  12. 12.
    Lehmann, J.: DL-learner: learning concepts in description logics. J. Mach. Learn. Res. 10, 2639–2642 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Petrucci, G., Ghidini, C., Rospocher, M.: Ontology learning in the deep. In: Blomqvist, E., Ciancarini, P., Poggi, F., Vitali, F. (eds.) EKAW 2016. LNCS (LNAI), vol. 10024, pp. 480–495. Springer, Cham (2016). CrossRefGoogle Scholar
  14. 14.
    Ramakrishnan, C., Kochut, K.J., Sheth, A.P.: A framework for schema-driven relationship discovery from unstructured text. In: Cruz, I., et al. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 583–596. Springer, Heidelberg (2006). CrossRefGoogle Scholar
  15. 15.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  16. 16.
    Del Vasto Terrientes, L., Moreno, A., Sánchez, D.: Discovery of relation axioms from the web. In: Bi, Y., Williams, M.-A. (eds.) KSEM 2010. LNCS (LNAI), vol. 6291, pp. 222–233. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  17. 17.
    Tonon, A., Catasta, M., Demartini, G., Cudré-Mauroux, P.: Fixing the domain and range of properties in linked data by context disambiguation. In: LDOW@ WWW (2015)Google Scholar
  18. 18.
    Völker, J., Niepert, M.: Statistical schema induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011). CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Gentile, A.L., Blomqvist, E., Augenstein, I., Ciravegna, F.: An unsupervised data-driven method to discover equivalent relations in large linked datasets. Semant. Web 8(2), 1–27 (2015)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyMadrasIndia

Personalised recommendations