Missing RDF Triples Detection and Correction in Knowledge Graphs

  • Lihua Zhao
  • Rumana Ferdous Munne
  • Natthawut Kertkeidkachorn
  • Ryutaro Ichise
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10675)


Knowledge graphs (KGs) have become a powerful asset in information science and technology. To foster enhancing search, information retrieval and question answering domains KGs offer effective structured information. KGs represent real-world entities and their relationships in Resource Description Framework (RDF) triples format. Despite the large amount of knowledge, there are still missing and incorrect knowledge in the KGs. We study the graph patterns of interlinked entities to discover missing and incorrect RDF triples in two KGs - DBpedia and YAGO. We apply graph-based approach to map similar object properties and apply similarity based approach to map similar datatype properties. Our propose methods can utilize those similar ontology properties and efficiently discover missing and incorrect RDF triples in DBpedia and YAGO.


RDF triple Knowledge graph Word embedding Ontology matching 



This work was partially supported by NEDO (New Energy and Industrial Technology Development Organization).


  1. 1.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I.J., Harp, A., Irving, G., Isard, M., Jia, Y., Józefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D.G., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.A., Vanhoucke, V., Vasudevan, V., Viégas, F.B., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. Computing Research Repository (CoRR) abs/1603.04467 (2016)Google Scholar
  2. 2.
    Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-Schneider, P.F., Stein, L.A.: OWL Web Ontology Language Reference. W3C Recommendation (2004).
  3. 3.
    Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  4. 4.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: 26th International Conference on Neural Information Processing Systems (NIPS), pp. 2787–2795. Curran Associates, Inc. (2013)Google Scholar
  5. 5.
    Feng, J., Huang, M., Yang, Y., Zhu, X.: GAKE: graph aware knowledge embedding. In: 26th International Conference on Computational Linguistics, pp. 641–651 (2016)Google Scholar
  6. 6.
    Garten, J., Sagae, K., Ustun, V., Dehghani, M.: Combining distributed vector representations for words. In: NAACL-HLT, pp. 95–101 (2015)Google Scholar
  7. 7.
    Handler, A.: An empirical study of semantic similarity in WordNet and Word2Vec. Ph.D. thesis, University of New Orleans (2014)Google Scholar
  8. 8.
    Ichise, R.: An analysis of multiple similarity measures for ontology mapping problem. Int. J. Semant. Comput. 4(1), 103–122 (2010)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kertkeidkachorn, N., Ichise, R.: Estimating distributed representations of compound words using recurrent neural networks. In: Frasincar, F., Ittoo, A., Nguyen, L.M., Métais, E. (eds.) NLDB 2017. LNCS, vol. 10260, pp. 235–246. Springer, Cham (2017). CrossRefGoogle Scholar
  10. 10.
    Klyne, G., Carroll, J.J.: Resource Description Framework (RDF): Concepts and Abstract Syntax. W3C Recommendation (2004).
  11. 11.
    Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., Bizer, C.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web J. 6(2), 167–195 (2015)Google Scholar
  12. 12.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: 29th AAAI Conference on Artificial Intelligence, pp. 2181–2187 (2015)Google Scholar
  13. 13.
    Mahdisoltani, F., Biega, J., Suchanek, F.M.: YAGO3: a knowledge base from multilingual Wikipedias. In: 7th Biennial Conference on Innovative Data Systems Research (CIDR) (2015)Google Scholar
  14. 14.
    Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. Computing Research Repository (CoRR) abs/1301.3781 (2013)Google Scholar
  15. 15.
    Minervini, P., Fanizzi, N., d’Amato, C., Esposito, F.: Scalable learning of entity and predicate embeddings for knowledge graph completion. In: 14th International Conference on Machine Learning and Applications, pp. 162–167. IEEE (2015)Google Scholar
  16. 16.
    Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016)CrossRefGoogle Scholar
  17. 17.
    Pan, J.Z., Vetere, G., Gomez-Perez, J.M., Wu, H.: Exploiting Linked Data and Knowledge Graphs in Large Organisations. Springer, Cham (2016). Google Scholar
  18. 18.
    Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C Recommendation (2008).
  19. 19.
    Řehůřek, R., Sojka, P.: Software framework for topic modelling with large corpora. In: LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA (2010)Google Scholar
  20. 20.
    Shimaoka, S., Stenetorp, P., Inui, K., Riedel, S.: An attentive neural architecture for fine-grained entity type classification. In: AKBC (2016)Google Scholar
  21. 21.
    Socher, R., Perelygin, A., Wu, J.Y., Chuang, J., Manning, C.D., Ng, A.Y., Potts, C., et al.: Recursive deep models for semantic compositionality over a sentiment treebank. In: EMNLP, vol. 1631, p. 1642 (2013)Google Scholar
  22. 22.
    Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner, S.: Ontology-based integration of information - a survey of existing approaches. In: IJCAI-2001 Workshop: Ontologies and Information, pp. 108–117 (2001)Google Scholar
  23. 23.
    Winkler, W.E.: Overview of record linkage and current research directions. Technical report, Statistical Research Division U.S. Bureau of the Census (2006)Google Scholar
  24. 24.
    Zhao, L., Ichise, R.: Ontology integration for linked data. J. Data Semant. 3(4), 237–254 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Lihua Zhao
    • 1
  • Rumana Ferdous Munne
    • 2
    • 3
  • Natthawut Kertkeidkachorn
    • 2
    • 3
  • Ryutaro Ichise
    • 1
    • 2
    • 3
  1. 1.National Institute of Advanced Industrial Science and TechnologyTokyoJapan
  2. 2.SOKENDAI (The Graduate University for Advanced Studies)HayamaJapan
  3. 3.National Institute of InformaticsTokyoJapan

Personalised recommendations