Utility-Driven Data Management for Data-Intensive Applications in Fog Environments

  • Cinzia Cappiello
  • Barbara Pernici
  • Pierluigi Plebani
  • Monica VitaliEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10651)


The usage of sensors, smart devices, and wearables is becoming more and more common, and the amount of data they are able to generate can create a real value only if such data are properly analyzed. To this aim, the design of data-intensive applications needs to find a balance between the value of the output of the data analysis – that depends on the quality and quantity of available data – and the performance.

The goal of this paper is to propose a “data utility” model to evaluate the importance of data with respect to their usage in a data-intensive application running in a Fog environment. This implies that the data, as well as the data processing, could reside both on Cloud resources and on devices at the edge of the network. On this basis, the proposed data utility model puts the basis to decide if and how data and computation movements from the edge to the Cloud – and vice versa – can be enacted to improve the efficiency and the effectiveness of applications.


Data utility Cloud and Fog computing 



DITAS project is funded by the European Union Horizon 2020 research and innovation programme under grant agreement RIA 731945.


  1. 1.
    Batini, C., Scannapieco, M.: Data and Information Quality - Dimensions, Principles and Techniques. Data-Centric Systems and Applications. Springer, Cham (2016). CrossRefzbMATHGoogle Scholar
  2. 2.
    Cleve, A., Brogneaux, A.-F., Hainaut, J.-L.: A conceptual approach to database applications evolution. In: Parsons, J., Saeki, M., Shoval, P., Woo, C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 132–145. Springer, Heidelberg (2010). CrossRefGoogle Scholar
  3. 3.
    D’Andria, F., Field, D., Kopaneli, A., Kousiouris, G., Garcia-Perez, D., Pernici, B., Plebani, P.: Data movement in the Internet of Things domain. In: Dustdar, S., Leymann, F., Villari, M. (eds.) ESOCC 2015. LNCS, vol. 9306, pp. 243–252. Springer, Cham (2015). CrossRefGoogle Scholar
  4. 4.
    Even, A., Shankaranarayanan, G., Berger, P.D.: Inequality in the utility of customer data: implications for data management and usage. J. Database Mark. Custom. Strat. Manag. 17(1), 19–35 (2010)CrossRefGoogle Scholar
  5. 5.
    Garijo, D., Alper, P., Belhajjame, K., Corcho, Ó., Gil, Y., Goble, C.A.: Common motifs in scientific workflows: an empirical analysis. Future Generat. Comp. Syst. 36, 338–351 (2014)CrossRefGoogle Scholar
  6. 6.
    Gharib, M., Giorgini, P., Mylopoulos, J.: Analysis of information quality requirements in business processes, revisited. Requir. Eng. 1–23 (2016)Google Scholar
  7. 7.
    Gómez, A., Merseguer, J., Di Nitto, E., Tamburri, D.A.: Towards a UML profile for data intensive applications. In: Proceedings of the International Workshop on Quality-Aware DevOps, Saarbrücken, Germany, pp. 18–23 (2016)Google Scholar
  8. 8.
    Ho, T.T.N., Pernici, B.: A data-value-driven adaptation framework for energy efficiency for data intensive applications in clouds. In: 2015 IEEE Conference on Technologies for Sustainability (SusTech), pp. 47–52. IEEE (2015)Google Scholar
  9. 9.
    Hundepool, A., Domingo-Ferrer, J., Franconi, L., Giessing, S., Nordholt, E.S., Spicer, K., de Wolf, P.P.: Statistical Disclosure Control. Wiley, New York (2012)CrossRefGoogle Scholar
  10. 10.
    Ives, B., Olson, M.H., Baroudi, J.J.: The measurement of user information satisfaction. Commun. ACM 26(10), 785–793 (1983)CrossRefGoogle Scholar
  11. 11.
    Kock, N.F.: Encyclopedia of E-collaboration. Information Science Reference - Imprint of: IGI Publishing, Hershey (2007)Google Scholar
  12. 12.
    Lin, Y.C., Wu, C.W., Tseng, V.S.: Mining high utility itemsets in big data. In: Cao, T., Lim, E.P., Zhou, Z.H., Ho, T.B., Cheung, D., Motoda, H. (eds.) PAKDD 2015. LNCS, vol. 9078, pp. 649–661. Springer, Cham (2015). CrossRefGoogle Scholar
  13. 13.
    Moody, D., Walsh, P.: Measuring the value of information: an asset valuation approach. In: European Conference on Information Systems (1999)Google Scholar
  14. 14.
    Nalchigar, S., Yu, E., Ramani, R.: A conceptual modeling framework for business analytics. In: Comyn-Wattiau, I., Tanaka, K., Song, I.Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 35–49. Springer, Cham (2016). CrossRefGoogle Scholar
  15. 15.
    OpenFog Consortium Architecture Working Group: OpenFog Architecture Overview, February 2016.
  16. 16.
    Syed, M.R., Syed, S.N.: Handbook of Research on Modern Systems Analysis and Design Technologies and Applications. Information Science Reference - Imprint of: IGI Publishing, Hershey (2008)Google Scholar
  17. 17.
    Turner, V., Reinsel, D., Gatz, J.F., Minton, S.: The digital universe of opportunities. IDC White Paper, April 2014Google Scholar
  18. 18.
    Wang, J., Zhu, X., Bao, W., Liu, L.: A utility-aware approach to redundant data upload in cooperative mobile cloud. In: 9th IEEE International Conference on Cloud Computing, CLOUD 2016, San Francisco, CA, USA, pp. 384–391 (2016)Google Scholar
  19. 19.
    Wang, R.Y., Strong, D.M.: Beyond accuracy: what data quality means to data consumers. J. Manage. Inf. Syst. 12(4), 5–33 (1996)CrossRefGoogle Scholar
  20. 20.
    Weiss, G.M., Zadrozny, B., Saar-Tsechansky, M.: Guest editorial: special issue on utility-based data mining. Data Min. Knowl. Discov. 17(2), 129–135 (2008)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Cinzia Cappiello
    • 1
  • Barbara Pernici
    • 1
  • Pierluigi Plebani
    • 1
  • Monica Vitali
    • 1
    Email author
  1. 1.DEIBPolitecnico di MilanoMilanoItaly

Personalised recommendations