Ground Granulated Blast-Furnace Slag

  • Winnie Matthes
  • Anya Vollpracht
  • Yury Villagrán
  • Siham Kamali-Bernard
  • Doug Hooton
  • Elke Gruyaert
  • Marios Soutsos
  • Nele De Belie
Chapter
Part of the RILEM State-of-the-Art Reports book series (RILEM State Art Reports, volume 25)

Abstract

Since the discovery of the latent hydraulic reactivity of ground granulated blast-furnace slag (ggbfs) by Emil Langen at the end of the 19th century, this material has been used successfully as cement and concrete addition. This chapter includes all relevant information about this valuable material—from production and processing to the effect, which ggbfs additions have on the concrete performance. In this context, light is shed on decisive performance parameters of ggbfs. Of special interest nowadays is certainly also the information given about trace element contents in ggbfs and their leachability. Here and throughout the entire chapter, the latest insights from research and development work are included. Last but not least, the chapter contains very practical information when it comes to the use of ggbfs in concrete, including insights on rheological effects, concrete color and “greening”, and adequate curing. Moreover, an overview about relevant norms and standards on ggbfs as concrete addition is given.

Keywords

Carbonation Chloride ingress Concrete Granulated blast-furnace slag Ggbfs Permeability Slag cement Strength Workability 

References

  1. ACI 308R-01 (2001) Guide to curing concrete. American Concrete InstituteGoogle Scholar
  2. ACI 233R-03 (2011) Slag cement in concrete and mortar. American Concrete InstituteGoogle Scholar
  3. Addis BJ (ed) (1986) Fulton’s concrete technology, 6th ed. Portland Cement Institute RSAGoogle Scholar
  4. Ait-Aider H (1988) Influence of ground granulated blastfurnace slag on the bleed characteristics of concrete. MPhil Thesis, University of Leeds, EnglandGoogle Scholar
  5. Alonso MM, Palacios M, Puertas F, De la Torre AG, Aranda MAG (2007) Effect of polycarboxylate admixture structure on cement paste rheology. Materiales de Construcción 57(286):65–81Google Scholar
  6. Alshamsi AM (2001) Stiffening rates of blended-cement pastes in hot climates. Adv Cem Res 13(1):11–16CrossRefGoogle Scholar
  7. Andersson R, Gram H-E (1988) Alkali-activated slag; Part I Properties of alkali-activated slag, CBI forskning/research fo 1.88. Swedish Cement and Concrete Research Institute, Stockholm, pp 1–63Google Scholar
  8. Angst U, Elsener B, Larsen CK, Vennesland O (2009) Critical chloride content in reinforced concrete—a review. Cem Concr Res 39:1122–1138CrossRefGoogle Scholar
  9. Arya C, Buenfeld NR, Newman JB (1990) Factors influencing chloride binding in concrete. Cem Concr Res 20(2):291–300CrossRefGoogle Scholar
  10. Bamforth PB (1980) In situ measurement of the effect of partial Portland cement replacement using either fly ash or ground granulated blast-furnace slag on the performance of mass concrete. Proc Inst Civil Eng 69:777–800 (London, Sept. Part 2)Google Scholar
  11. Barnett SJ, Soutsos MN, Millard SG, Bungey JH (2006) Strength development of mortars containing ground granulated blast-furnace slag: effect of curing temperature and determination of apparent activation energies. Cem Concr Res 36:434–440CrossRefGoogle Scholar
  12. Basheer PAM, Gilleece PRV, Long AE, Mc Carter WJ (2002) Monitoring electrical resistance of concretes containing alternative cementitious materials to assess their resistance to chloride penetration. Cem Concr Comp 24:437–449CrossRefGoogle Scholar
  13. Bensted J (1981) Hydration of Portland cement. In: Ghosh SN (ed) Advances in cement technology. Pergamon Press, New York, pp 307–347Google Scholar
  14. Berndt ML (2009) Properties of sustainable concrete containing fly ash, slag and recycled concrete aggregate. Constr Build Mater 23:2606–2613CrossRefGoogle Scholar
  15. Beushausen H, Alexander M, Ballim Y (2012) Early-age properties, strength development and heat of hydration of concrete containing various South African slags at different replacement ratios. Constr Build Mater 29:533–540CrossRefGoogle Scholar
  16. Bialucha R (2000) Radioaktivität von Eisenhütten- und Metallhüttenschlacken (Radioactivity of iron and metallurgical slags). Report des Forschungsinstitutes Eisenhüttenschlacken, 2/2000Google Scholar
  17. Bijen J (1996) Benefits of slag and fly ash. Constr Build Mater 10:309–314CrossRefGoogle Scholar
  18. Bleszynski RF, Hooton RD, Thomas MDA, Rogers CA (2002) Durability of ternary blend concretes with silica fume and blastfurnace slag: laboratory and outdoor exposure site studies. ACI Mater J 99:499–508Google Scholar
  19. Borges PHR, Costa JO, Milestone NB, Lynsdale CJ, Streatfield RE (2010) Carbonation of CH and CSH in composite cement pastes containing high amounts of BFS. Cem Concr Res 40:284–292CrossRefGoogle Scholar
  20. Bouikni A, Swamy RN, Bali A (2009) Durability properties of concrete containing 50% and 65% slag. Constr Build Mater 23:2836–2845CrossRefGoogle Scholar
  21. Boukendakdji O, Kenai S, Kadri EH, Rouis F (2009) Effect of slag on the rheology of fresh self-compacted concrete. Constr Build Mater 23:2593–2598CrossRefGoogle Scholar
  22. Boukendakdji O, Kadri E-H, Kenai S (2012) Effects of granulated blast furnace slag and superplasticizer type on the fresh properties and compressive strength of self-compacting concrete. Cem Concr Compos 34:583–590CrossRefGoogle Scholar
  23. Brameshuber W, Vollpracht A (2007) Effiziente Sicherstellung der Umweltverträglichkeit von Beton. In: Schlussberichte zur ersten Phase des DAfStb-/BMBF-Verbundfor-schungsvorhabens “Nachhaltig Bauen mit Beton”. Beuth, Schriftenreihe des Deutschen Ausschusses für Stahlbeton, No. 572, Berlin, pp 223–273. ISBN 978-3-410-65772-9Google Scholar
  24. Brameshuber W, Rasch S, Uebachs S, Rankers R (2008) Untersuchungen und Abschätzung der Leistungungsfähigkeit von Hüttensanden in Bindemittel für Beton. Institute of Building Materials Research (ibac), RWTH Aachen University, Research Report No. F 7037, AachenGoogle Scholar
  25. Brameshuber W, Vollpracht A, Rasch S (2009) Erarbeitung von Anwendungsregeln für Hüttensand als Betonzusatzstoff gemäß der harmonisierten Europäischen Stoffnorm. Institute of Building Materials Research (ibac), RWTH Aachen University, Research Report No. F 7038, Fraunhofer IRB Verlag, Aachen. ISBN 978-3-8167-8147-9Google Scholar
  26. Brand J, Luley H, Preis W, Tegelaar RA, Tietze K, Wolf H (1982) Betonfertigteile – Herstellung und Anwendung (Production of concrete components—manufacture and application). Verlagsgesellschaft Rudolf Müller, KölnGoogle Scholar
  27. Brooks JJ, Wainwright PJ, Boukendakji M (1992) Influence of slag type and replacement level on strength, elasticity, shrinkage, and creep of concrete. In: Malhotra VM (ed) Fourth CANMET/ACI international conference on fly ash, silica fume, slag, and natural pozzolans in concrete. American Concrete Institute SP-132 2, pp 1325–1341Google Scholar
  28. Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (ed) (1993) Umweltradioaktivität und Strahlenbelastung (Environmental radionuclide and radiation exposure). Jahresbericht 1992, BonnGoogle Scholar
  29. Carette GG, Malhotra VM (1987) Characterization of Canadian fly ashes and their relative performance in concrete. Can J Civ Eng 14:667–682CrossRefGoogle Scholar
  30. Cesareni C, Frigione G (1969) A contribution to the study of the physical properties of hardened pastes of Portland cement containing granulated blast furnace slag. In: Proceedings of the 5th symposium on the chemistry of cement, 7–11 October 1968, Tokyo, JapanGoogle Scholar
  31. Chen W (2006) Hydration of slag cement. Theory, modeling and application. Ph.D. Thesis, University of Twente, The Netherlands, 223 pGoogle Scholar
  32. Cheng A, Huang R, Wu J-K, Chen C-H (2005) Influence of GGBS on durability and corrosion behavior of reinforced concrete. Mater Chem Phys 93:404–411CrossRefGoogle Scholar
  33. Darquennes A (2009) Comportement au jeune âge de bétons formulés à base de ciment au laitier de haut fourneau en condition de déformations libre et restreinte. Ph.D. Thesis, Université Libre de Bruxelles ULB, BelgiumGoogle Scholar
  34. Daugherty KE, Saad B, Weirich C, Eberendu A (1983) The glass content of slag and hydraulic activity. Silic Indus 4(5):107–110Google Scholar
  35. De Belie N, Kratky J, Van Vlierberghe S (2010) Influence of pozzolans and slag on the microstructure of partially carbonated cement paste by means of water vapour and nitrogen sorption experiments and BET calculations. Cem Concr Res 40:1723–1733CrossRefGoogle Scholar
  36. De Langavant JC (1949) Considération théorétiques sur la nature du laitier de cimenterie (Theoretical considerations on the nature of slag cement). Rev Matér Constr Traveaux Publics 401:381–411Google Scholar
  37. De Schutter G (1999) Hydration and temperature development of concrete made with blast-furnace slag cement. Cem Concr Res 29(1):143–149CrossRefGoogle Scholar
  38. De Schutter G, Taerwe L (1995) General hydration model for Portland cement and blast furnace slag cement. Cem Concr Res 25(3):593–604CrossRefGoogle Scholar
  39. Demirboga R (2003) Influence of mineral admixtures on thermal conductivity and compressive strength of mortar. Energy Build 35:189–192CrossRefGoogle Scholar
  40. Dhir RK, El-Mohr MAK, Dyer TD (1996) Chloride binding in GGBS concrete. Cem Concr Res 26(12):1767–1773CrossRefGoogle Scholar
  41. Domone PLJ, Soutsos MN (1995) Properties of high strength concrete mixes containing PFA and ggbs. Mag Concr Res 47(173):355–367CrossRefGoogle Scholar
  42. Douglas E, Brandstetr J (1990) A preliminary stuidy on the alkali activation of ground granulated blast-furnace slag. Cem Concr Res 20:746–756CrossRefGoogle Scholar
  43. Dron R, Brivot F (1980) Approche du problème de la réactivité du laitier granulé. In: Proceedings of the 7th international conference on chemistry of cement, Paris, vol 2, III, pp 134–139Google Scholar
  44. Dubovoy VS (1986) Effects of ground granulated blast-furnace slags on some properties of pastes, mortars and concretes. In: Blended cements. ASTM Sp Tech Publ 897, PhiladelphiaGoogle Scholar
  45. Duran Atis C, Bilim C (2007) Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Build Environ 42:3060–3065CrossRefGoogle Scholar
  46. Ehrenberg A (2012) Does stored granulated blast furnace slag lose its reactivity? Cem Int 10(4):64–79Google Scholar
  47. Ehrenberg A, Israel D, Kühn A, Ludwig HM, Tigges V, Wassing W (2008a) Hüttensand: Reaktionspotenzial und Herstellung optimierter Zemente Tl.1 (Granulated blast furnace slag: reaction potential and production of optimized cements, part 1) Cem IntGoogle Scholar
  48. Ehrenberg A, Wilhelm D, Kühn A, Ludwig HM, Tigges V, Wassing W (2008b) Hüttensand: Reaktionspotenzial und Herstellung optimierter Zemente. Tl.2 (Granulated blast furnace slag: reaction potential and production of optimized cements, part 2) Cem Int 6(3):82–92Google Scholar
  49. Eren O, Brooks JJ, Celik T (1995) Setting of fly ash and slag-cement concrete as affected by curing temperature. Cem Concr Agg 17(1):l–7Google Scholar
  50. Feldrappe V, Nobis C, Vollpracht A, Ehrenberg A, Brameshuber W (2016) Entwicklung von Anwendungsregeln für Hüttensandmehl als Betonzusatzstoff (Development of application rules for ground granulated slagas a concrete additive). Institut für Baustoff-Forschung, Duisburg and Institute of Building Materials Research (ibac), RWTH Aachen University, Aachen, Research Report 16743NGoogle Scholar
  51. Frigione G (1986) Manufacture and characteristics of Portland blastfurnace slag cements In: Blended cements. ASTM STP 897, pp 15–28Google Scholar
  52. Fulton FS (1974) The properties of Portland cement containing milled granulated blast-furnace slag. Monograph, Portland Cement Institute, Johannesburg, pp 4–46Google Scholar
  53. Gesoğlu M, Güneyisi E, Özbay E (2009) Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Constr Build Mater 23:1847–1854CrossRefGoogle Scholar
  54. Gruyaert E (2011) Effect of blast-furnace slag as cement replacement on hydration, microstructure, strength and durability of concrete. Ph.D. Thesis, Ghent University, Ghent, 345 ppGoogle Scholar
  55. Gruyaert E, Van Den Heede P, De Belie N (2013) Carbonation of slag concrete: effect of the cement replacement level and curing on the carbonation coefficient—effect of carbonation on the pore structure. Cem Concr Compos 35:39–48CrossRefGoogle Scholar
  56. Güneyisi E, Gesoğlu M (2008) A study on durability properties of high-performance concretes incorporating high replacement levels of slag. Mater Struct 40(3):479–493CrossRefGoogle Scholar
  57. Hadj-Sadok A, Kenai S, Courard L, Darimont A (2011) Microstructure and durability of mortars modified with medium active blast furnace slag. Constr Build Mater 25:1018–1025CrossRefGoogle Scholar
  58. Hamada D, Sato T, Yamato F, Mizunuma T (2000) Development of new superplasticizers and its application to self-compacting concrete. In: Proceedings of the 6th CANMET/ACI international conference on superplasticizers and other chemical admixtures in concrete. Nice, France, ACI SP 195, pp 291–304Google Scholar
  59. Hewlett PC (ed) (1998) Lea’s chemistry of cement and concrete. Elsevier, LondonGoogle Scholar
  60. Hogan FJ, Meusel JW (1981) Evaluation for durability and strength development of a ground granulated blast-furnace slag. Cem Concr Agg 3(1):40–52CrossRefGoogle Scholar
  61. Hooton RD (1987) The reactivity and hydration products of blast furnace slag. In: Malhotra VM (ed) Supplementary cementing materials for concrete. CANMET, Ottawa, pp 247–280. ISBN 0-660-12550-1Google Scholar
  62. Hooton RD (2000) Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete. Can J Civ Eng 27:754–760CrossRefGoogle Scholar
  63. Hooton RD, Charmchi G (2015) Adoption of resistivity tests for concrete acceptance. In: Proceedings of the recent advances in concrete technology and sustainability issues. American Concrete Institute SP-303, pp 269–279Google Scholar
  64. Hooton RD, Emery JJ (1983) Glass content determination and strength predictions for vitrified blast furnace slag. ACI SP-79(2):943–962Google Scholar
  65. Hooton RD, Stanish K, Angel JP, Prusinski J (2009) The effect of ground granulated blast furnace slag (slag cement) on the drying shrinkage of concrete—a critical review of the literature. Am Concr Inst SP 263:91–108Google Scholar
  66. Hooton RD, Rogers CA, MacDonald CA, Ramlochan T (2013) 20-year field evaluation of alkali-silica reaction mitigation. ACI Mater J 110(5):539–548Google Scholar
  67. Hunkeler F, Lammar L (2012) Requirements for the carbonation resistance of concrete mixes. Report for Swiss Federal Office of RoadsGoogle Scholar
  68. Hwang CL, Lin CY (1986) Strength development of blended blast-furnace slag cement mortars. ACI SP 91:1323–1340Google Scholar
  69. Izquierdo D, Alonso CMC, Andrade C (2004) Potentiostatic determination of chloride threshold values for rebar depassivation: experimental and statistical study. Electrochem Acta 49:2731–2739CrossRefGoogle Scholar
  70. Juenger M, Won M, Fowler D, Suh C, Edson A (2008) Effects of supplementary cementing materials on the setting time and early strength of concrete. Technical Report FHWA/TX-08/0-5550-1, 82 pGoogle Scholar
  71. Khatib JM, Hibbert JJ (2005) Selected engineering properties of concrete incorporating slag and metakaolin. Constr Build Mater 19:460–472CrossRefGoogle Scholar
  72. Kishi T, Maekawa K (1995) Thermal and mechanical modelling of young concrete based on hydration process of multi-component cement minerals. In: Thermal cracking in concrete at early ages. Taylor & Francis, MunichGoogle Scholar
  73. Kocaba V, Gallucci E, Scrivener K (2012) Methods for determination of degree of reaction of slag in blended cement pastes. Cem Concr Res 42(3):511–525CrossRefGoogle Scholar
  74. Kollo H (1991) Einfluß der chemischen Zusammensetzung von Hüttensand auf dessen Hydraulizität (Influence of the chemical composition of granulated slag on its hydraulicity). Beton-Informationen 31:22–23Google Scholar
  75. Kollo H, Geiseler J (1987) Beurteilung der Qualität von Hüttensand anhand von Kennwerten (Assessment of the quality of granulated slag by means of indicators). Beton-Informationen 4:48–51Google Scholar
  76. Lane DS (2012) Performance of slag cement in hydraulic cement concrete. Transp Res Rec 2290:84–88CrossRefGoogle Scholar
  77. Lea FM (1971) The chemistry of cement and concrete, 3rd edn. Chemical Publishing Co., New York, pp 454–489Google Scholar
  78. Lee KM, Lee HK, Lee SH, Kim GJ (2006) Autogenous shrinkage of concrete containing granulated blast-furnace slag. Cem Concr Res 36(7):1279–1285CrossRefGoogle Scholar
  79. Le Cornec D, Wang Q, Galoisy L, Renaudin G, Izoret L, Calas G (2017) Greening effect in slag cement materials. Cem Concr Compos 84:93–98Google Scholar
  80. Lothia RP, Joshi RC (1995) Mineral admixtures. In: Ramachandran VS (ed) Concrete admixtures handbook. Properties, science and technology, 2nd ed. Noyes Publications, New Jersey, pp 657–739Google Scholar
  81. Lübeck A, Gastaldini ALG, Barin DS, Siqueira HC (2012) Compressive strength and electrical properties of concrete with white Portland cement and blast-furnace slag. Cem Concr Compos 34:392–399CrossRefGoogle Scholar
  82. Luo R, Cai Y, Wang C, Huang X (2003) Study of chloride binding and diffusion in GGBS concrete. Cem Concr Res 33:1–7CrossRefGoogle Scholar
  83. Malhotra VM (1980) Strength and freeze-thaw characteristics of concrete incorporating granulated blast-furnace slag. Canmet, IR 79–38, Energy, Mines and Resources, OttawaGoogle Scholar
  84. Malolepszy J (1986) Activation of synthetic melitite slags by alkalis. In: Proceedings of the 8th international congress on the chemistry of cements, vol IV. Brazil, pp 104–107Google Scholar
  85. Marushima N, Kuroha K, Tomatsuri K, Kubota K, Koibuchi K, Ishikawa Y (1993) Study on high-strength concrete with blast furnace slag cement incorporating very fine slag. In: Holand I, Sellovold E (eds) Proceedings of the symposium on utilization of high strength concrete, vol 2. Lillehammer, Norway, pp 830–837Google Scholar
  86. Matthes W (2012) Studies on effect of ggbfs properties, reactivity and fineness on performance. Holcim Technology Ltd. UnpublishedGoogle Scholar
  87. Matthes W (2014) Gbfs in cement—opportunities and Challenges. Presentation at 10th global slag conference, Aachen, 8–9 December 2014Google Scholar
  88. Matthes W, Matschei T, Castelltort Z, Baalbaki M (2011) Hydraulisches Bindemittel (Hydraulic Binder). AT 511689-A1 (Austrian Patent)Google Scholar
  89. Megat Johari MA, Brooks JJ, Kabir S, Rivard P (2011) Influence of supplementary cementitious materials on engineering properties of high strength concrete. Constr Build Mater 25:2639–2648CrossRefGoogle Scholar
  90. Meusel JW, Rose JH (1983) Production of granulated blast furnace slag at sparrows point, and the workability and strength potential of concrete incorporating the slag. In: Malhotra VM (ed) ACI SP 79 Fly ash, silica fume, slag & other mineral by-products in concrete, vol II. ACI, Detroit, pp 867–890Google Scholar
  91. Moranville-Regourd M (1998) Cements made from blast furnace slag. In: Hewlett PC (ed) Lea’s chemistry of cement and concrete. Edward Arnold (Publishers) Ltd., London, pp 633–674Google Scholar
  92. Nakamura N, Sakai M, Swamy RN (1991) Effect of slag fineness on the engineering properties of high strength concrete. In: Swamy RN (ed) Proceedings international conference on blended cements in construction, Sheffield, UK, pp. 302–316Google Scholar
  93. Neville AM (1995) Properties of concrete. Longman, EssexGoogle Scholar
  94. Niknezhad D, Kamali-Bernard S (2015) Etude du retrait et des propriétés de transport d’Eco-BAP à base d’additions minérales (Study of the shrinkage and transport properties of Eco-BAP based on mineral additions). In: Proceedings of 33èmes Rencontres Universitaires de Génie Civil, FranceGoogle Scholar
  95. Nokken MR, Hooton RD (2004) Discontinuous capillary pore structure-does it exist? In: Proceedings of the advances in concrete through science and engineering, ACBM/RILEM international symposium, North Western University, 22–24 MarchGoogle Scholar
  96. Nokken MR, Hooton RD (2006) Electrical conductivity as a prequalification and quality control tool. Concr Int 28(10):61–66Google Scholar
  97. NT Build 492 (1999) Concrete, mortar and cement-based repair materials: chloride migration coefficient from non-steady-state migration experiments. Nordtest, Espoo, Finland, www.nordtest.info
  98. Olbrich E (1999) Struktur und Reaktionsfähigkeit von Hüttensandglas (Structure and reactivity of granulated slag glass). Ph.D. Thesis, TU Clausthal, Germany, 180 ppGoogle Scholar
  99. Olsson N, Baroghel-Bouny V, Nilsson L-O, Thiery M (2013) Non-saturated ion diffusion in concrete—a new approach to evaluate conductivity measurements. Cem Concr Compos 40:40–47CrossRefGoogle Scholar
  100. Oner A, Akyuz S (2007) An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cem Concr Compos 29:505–514CrossRefGoogle Scholar
  101. Osborne GJ (1989) Carbonation and permeability of blast-furnace slag cement concretes from field structures. In: Malhotra VM (ed) Proceedings of the 3rd international conference on fly ash, silica fume, slag and natural pozzolans in concrete. ACI SP-114, Trondheim, pp 1209–1238Google Scholar
  102. Osterminsky K, Schießl P, Volkwein A, Mayer TF (2006) Modelling reinforcement corrosion—usability of a factorial approach for modelling resistivity of concrete. Mater Corros 57(12):926–931CrossRefGoogle Scholar
  103. Palacios M, Houst YF, Bowen P, Puertas F (2009a) Adsorption of superplasticizer admixtures on alkali-activated slag pastes. Cem Concr Res 39(8):670–677CrossRefGoogle Scholar
  104. Palacios M, Puertas F, Bowen P, Houst YF (2009b) Effect of PCs superplasticizers on the rheological properties and hydration process of slag-blended cement pastes. J Mater Sci 44(10):2714–2723CrossRefGoogle Scholar
  105. Panesar DK, Chidiac SE (2009) Capillary suction model for characterizing salt scaling resistance of concrete containing GGBFS. Cem Concr Compos 31:570–576CrossRefGoogle Scholar
  106. Peterson Becknell N, Hale WM (2011) Effect of slag grade and cement source on the properties of concrete. Int J Concr Struct Mater 5(2):119–123CrossRefGoogle Scholar
  107. Polder RB, Peelen WHA (2002) Characterization of chloride transport and reinforcement corrosion in concrete under cyclic wetting and drying by electrical resistivity. Cem Concr Compos 24:427–435CrossRefGoogle Scholar
  108. Problem Clinic (2011) Greening of slag cement concrete, http://www.concreteconstruction.net/howto/greening-of-slag-cement-concrete_o, August 31, 2011
  109. Puertas F, Alonso MM, Vázquez T (2005) Effect of polycarboxylate admixtures on Portland cement paste setting and rheological behavior. Mater Constr 55(277):61–73CrossRefGoogle Scholar
  110. Reynolds S (2009) The Future of Ferrous Slag, Market Forecasts to 2020. Pira International Ltd., Cleeve Road, Surrey KT227RU, Leatherhead, UKGoogle Scholar
  111. Rickert J, Vollpracht A (2014) Analysekonzept zur Bestimmung von Spurenelementen in Eluaten zementgebundener Baustoffe. IGF Research project 16989 N (AiF)Google Scholar
  112. Rickert J, Spanka G, Nebel H (2011) Harmonisierung von Prüfmethoden für den Vollzug der EG-Bauprodukten-Richtlinie. Validierung eines europäischen Auslaugtests für Bauprodukte. Schriftenreihe Umweltforschungsplan des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit, Forschungskennzahl 3709 95 303, UBA-FB 001487. http://www.uba.de/uba-info-medien/4153.html
  113. Rickett SCE (1990) An investigation of the controlling factors in the bleeding of Portland blast furnace cement concrete. In: Advance Concrete Technology course project. Institute of Concrete Technology, Beaconsfield, p 139Google Scholar
  114. Riding KA, Thomas MDA, Folliard KJ (2013) Apparent diffusivity model for concrete containing supplementary cementitious materials. ACI Mater J 110(6):705–714Google Scholar
  115. RILEM (1999) RILEM TC116-PCD: permeability of concrete as a criterion of its durability. Mater Struct 32:174–179CrossRefGoogle Scholar
  116. Robeyst N (2009) Monitoring setting and microstructure development in fresh concrete with the ultrasonic through-transmission method. Ph.D. Thesis, Ghent University, Ghent, p 251Google Scholar
  117. Robeyst N, Gruyaert E, Grosse CU, De Belie N (2008) Monitoring the setting of concrete containing blast-furnace slag by measuring the ultrasonic p-wave velocity. Cem Concr Res 38:1169–1176CrossRefGoogle Scholar
  118. Romberg H (1978) Zementsteinporen und Betoneigenschaften. Beton-Informationen 18(5):50–55Google Scholar
  119. Roy DM, Idorn GM (1982) Hydration, structure and properties of blast-furnace slag cements, mortars and concrete. J ACI 79(6):444–457Google Scholar
  120. Roy DM, Parker KM (1983) Microstructures and properties of granulated slag-Portland cement blends at normal and elevated temperatures. In: Malhotra VM (ed) Proceedings of the 1st international conference on the use of fly ash, silica fume, slag and other mineral by-products in concrete SP-79. American Concrete Institute, 1, pp 397–414Google Scholar
  121. Satarin V (1974) Slag Portland cement. In: Proceedings of the 6th international congress on chemistry of cement, Moscow, 51 ppGoogle Scholar
  122. Sato S, Masuda Y (2005) Strength development of concrete using ground granulated blast-furnace slag under various temperature conditions. In: Proceedings of the 2nd international symposium non-traditional cement and concrete, BrnoGoogle Scholar
  123. SCA (2002) Slag cement in concrete. Info Sheet Index, www.slagcement.org
  124. Schindler AK, Folliard KJ (2003) Influence of supplementary cementing materials on the heat of hydration of concrete. In: Proceedings of the 9th conference on advances in cement and concrete, ColoradoGoogle Scholar
  125. Scholz E, Wierig H-J (1988) Untersuchungen über den Einfluß von Flugaschezusätzen auf das Carbonatisierungsverhalten von Beton. I. Ergänzung. Hannover: Institut für Baustoffkunde und Materialprüfung (research report)Google Scholar
  126. Schröder F (1961) Über die hydraulischen Eigenschaften von Hüttensanden und ihre Beurteilungsmethoden (On the hydraulic properties of granulated slags and their assessment methods). Tonmineralogie-Zeitung 85(2/3):39–44Google Scholar
  127. Schröder F (1969) Slags and slag cements. In: Proceedings of the 5th international symposium on the chemistry of cement, vol 4, Tokyo, 1968, pp 149–199Google Scholar
  128. Shi C, Day RL (1996) Some factors affecting early hydration of alkali-slag cements. Cem Concr Res 26:439–447CrossRefGoogle Scholar
  129. Shi YX, Matsui I, Guo YJ (2004) A study on the effect of fine mineral powders with distinct vitreous contents on the fluidity and rheological properties of concrete. Cem Concr Res 34:1381–1387CrossRefGoogle Scholar
  130. Shi H-S, Xu B-W, Zhou X-C (2009) Influence of mineral admixtures on compressive strength, gas permeability and carbonation of high performance concrete. Constr Build Mater 23:1980–1985CrossRefGoogle Scholar
  131. Sisomphon K, Copuroglu O, Fraaij ALA (2010) Development of blast-furnace slag mixtures against frost salt attack. Cem Concr Compos 32:630–638CrossRefGoogle Scholar
  132. Slag Cement Association (2002) Greening, Slag Cement Association P.O. Box 2615 Sugar Land, TX 77487–2615Google Scholar
  133. Smolczyk HG (1978) Zum Einfluß der Chemie des Hüttensandes auf die Festigkeiten von Hochofenzementen. Zement-Kalk-Gips 31(6):294–296Google Scholar
  134. Song S, Jennings HM (1999) Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cem Concr Res 29:159–170CrossRefGoogle Scholar
  135. Sopora H (1959) Bewertung von Hochofenschlacken für das Schmelzen und Granulieren der Hochofenschlacken (Evaluation of blast furnace slags for granulation of molten blast furnace slags). Zement-Kalk-Gips 11(4):125–137Google Scholar
  136. Soutsos MN (1992) Mix design, workability, adiabatic temperature and strength development of high strength concrete. Ph.D. Thesis, University of LondonGoogle Scholar
  137. Soutsos MN, Turu’allo G (2016) The rate of strength development of mortar mixes with SCMs at elevated curing temperatures. In: Proceedings of the international RILEM conference on materials, systems and structures in civil engineering, conference segment on concrete with SCMs. Lyngby, Denmark, pp 283–292Google Scholar
  138. Soutsos MN, Barnett SJ, Millard SG, Bungey JH (2005) Fast track construction with high strength concrete mixes containing ground granulated blast furnace slag. In: Russell HG (ed) 7th international symposium on utilization of high-strength/high performance concrete. Washington, D.C., USA, ACI SP 228 1, pp. 255–270Google Scholar
  139. Soutsos MN, Hatzitheodorou A, Kwasny J, Kanavaris F (2016) Effect of in situ temperature on the early age strength development of concretes with supplementary cementitious materials. Constr Build Mater 103:105–116. http://dx.doi.org/10.1016/j.conbuildmat.2015.11.034
  140. Springenschmid R, Breitenbucher R, Mangold M (1994) Development of the cracking frame and the temperature-stress testing machine. In: Springenschmid R (ed) Proceedings of the RILEM international symposium on thermal cracking in concrete at early ages. E&FN Spon, pp 137–144Google Scholar
  141. Swamy RN (1990) The role of mineral admixtures in enhancing the quality of concrete. In: Wierig HJ (ed) Proceedings of the RILEM colloquium: properties of fresh concrete. Hanover, pp 113–120Google Scholar
  142. Tang L (1996) Chloride transport in concrete: measurement and prediction. Ph.D. Thesis, Chalmers University of Technology, Göteborg, SwedenGoogle Scholar
  143. Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publishing, LondonCrossRefGoogle Scholar
  144. Technical Datasheet (2014) Embodied CO2e of UK cement, additions and cementitious material. Fact Sheet 18, joint publication with MPA and CSMA. http://www.ukqaa.org.uk/wp-content/uploads/2014/02/Datasheet_8-3_CO2e_info_-_MPA_Factsheet_18_v2.pdf
  145. Teng S, Lim TYD, Sabet Divsholi B (2013) Durability and mechanical properties of high strength concrete incorporating ultrafine ground granulated blast-furnace slag. Constr Build Mater 40:875–881CrossRefGoogle Scholar
  146. Teoreanu I, Georgescu M (1974) The behaviour of synthetic and industrial blast-furnace slags in the presence of activators. Zement-Kalk-Gips 27(6):308–312Google Scholar
  147. Tetmajer L (1886) Der Schlackenzement (The slag cement). Stahl Eisen 6:473–483Google Scholar
  148. Thomas MDA (2013) Supplementary cementing materials in concrete. CRC PressGoogle Scholar
  149. Thomas MDA, Bamforth PB (1999) Modeling chloride diffusion in concrete: effect of fly ash and slag. Cem Concr Res 29:487–495CrossRefGoogle Scholar
  150. Thomas MDA, Mukherjee PK (1994) Effect of slag on thermal cracking in concrete. In: Springenschmid R (ed) Proceedings of the RILEM international symposium on thermal cracking in concrete at early ages. E&FN Spon, pp 197–204Google Scholar
  151. Thomas MDA, Scott A, Bremner T, Bilodeau A, Day D (2008) Performance of slag concrete in marine environment. ACI Mater J 105(6):628–634Google Scholar
  152. Thomas MDA, Hooton RD, Scott A, Zibara H (2012) The effect of supplementary cementing materials and W/CM on the chloride binding capacity of cement paste. Cem Concr Res 42:1–7CrossRefGoogle Scholar
  153. Tigges VE (2010) Die Hydratation von Hüttensanden und Möglichkeiten ihrer Beeinflussung zur Optimierung von Hochofenzementeigenschaften (The hydration of granulated slags and the possibility of influencing them to optimize hydraulic properties). Schriftenreihe der Zementindustrie - Heft 76Google Scholar
  154. Turu’allo G (2013) Early age strength development of GGBS concrete cured under different temperatures. Ph.D. Thesis, University of Liverpool, UKGoogle Scholar
  155. Tuutti K (1982) Corrosion of steel in concrete. Ph.D. Thesis, Swedish Cement and Concrete Institute, CIB, Research Report No. 4, 468 pGoogle Scholar
  156. United Nations Scientific Committee on the effects of Atomic Radiation (2008) Sources and effects of ionizing radiation. UNSCEAR REPORT. ISBN 978-92-1-142274-0Google Scholar
  157. United Nations Scientific Committee on the effects of Atomic Radiation (2010) Sources and effects of ionizing radiation. UNSCEAR REPORTGoogle Scholar
  158. Valenza JJ II, Scherer GW (2007a) A review of salt scaling: I. Phenomenology. Cem Concr Res 37:1007–1021CrossRefGoogle Scholar
  159. Valenza JJ II, Scherer GW (2007b) A review of salt scaling: II. Mechanisms. Cem Concr Res 37:1022–1034CrossRefGoogle Scholar
  160. Van den Heede P, De Belie N (2012) Environmental impact and life cycle assessment (LCA) of traditional and green concretes: literature review and theoretical calculations. Cem Concr Compos 34:431–442CrossRefGoogle Scholar
  161. Van der Sloot HA, Hoede D, Rietra RPJJ et al (2001) Environmental criteria for cement based products: ECRICEM. Phase I: ordinary Portland cements. Energy Research Centre of the Netherlands, Petten, Report No. ECN-C–01-069Google Scholar
  162. Villagrán Zaccardi YA, Di Maio AA, Romagnoli R (2012) The effect of slag and limestone filler on resistivity, sorptivity, and permeability of concrete with low paste content. In: Proceedings XXI international materials research congress, vol 1488, Materials Research Society, pp 80–86Google Scholar
  163. Wainwright PJ, Ait-Aider H (1995) The influence of cement source and slag additions on the bleeding of concrete. Cem Concr Res 25(7):1445–1456CrossRefGoogle Scholar
  164. Wainwright PJ, Rey N (2000) The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete. Cem Concr Compos 22:253–257CrossRefGoogle Scholar
  165. Wainwright PJ, Tolloczko JJA (1986) Early and later age properties of temperature-cycled slag-OPC concrete. In: Malhotra VM (ed) Proceedings of the 2nd CANMET/ ACI international conference on fly ash, silica fume, slag, and natural pozzolans in concrete. American Concrete Institute, SP 91 2, pp 1293–1322Google Scholar
  166. Wang S-D, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043CrossRefGoogle Scholar
  167. Wang H, Qi C, Lewis J, Vaughan J (2007) Early-age hydration and strength development. Concr Int 29(1):42–49Google Scholar
  168. Wimpenny DE, Ellis CM, Higgins DD (1989) Development of strength and elastic properties in slag cement under low temperature curing conditions. In: Malhotra VM (ed) Proceedings of the 3rd international conference on fly ash, silica fume, slag and natural pozzolans in concrete. Trondheim, Norway, ACI SP-114, pp 1283–1306Google Scholar
  169. Wolter A, Frischat GH, Olbrich E (2003) Investigation of granulated blast furnace slag (GBFS) reactivity by SNMS. In: Proceedings of 11th international congress on the chemistry of cement. Durban, South Africa, pp 2703–2717Google Scholar
  170. Wood K (1981) Twenty years of experience with slag cement. In: Proceedings of the slag cement seminar, University of Alabama, Birmingham, April–May 1981Google Scholar
  171. Xu Y (1997) The influence of sulphates on chloride binding and pore solution chemistry. Cem Concr Res 27(12):1841–1850CrossRefGoogle Scholar
  172. Yang JC (1969) Chemistry of slag-rich cements. In: Proceedings of the 5th international symposium on the chemistry of cement, vol 4. Tokyo, pp 296–309Google Scholar
  173. Yoshida H, Iiska T, Sugiyama A (1986) Effect of curing temperature on properties of concrete. Trans Jpn Concr Inst 8:103–111Google Scholar
  174. Yuan Q (2008) Fundamental studies on test methods for the transport of chloride ions in cementitious materials. Ph.D. Thesis, University of Ghent and Central South UniversityGoogle Scholar

Copyright information

© RILEM 2018

Authors and Affiliations

  • Winnie Matthes
    • 1
  • Anya Vollpracht
    • 2
  • Yury Villagrán
    • 3
    • 4
  • Siham Kamali-Bernard
    • 5
  • Doug Hooton
    • 6
  • Elke Gruyaert
    • 4
    • 8
  • Marios Soutsos
    • 7
  • Nele De Belie
    • 4
  1. 1.Holcim Technology Ltd.HolderbankSwitzerland
  2. 2.Institute of Building Materials Research, RWTH Aachen UniversityAachenGermany
  3. 3.Department of Concrete TechnologyLEMITLa PlataArgentina
  4. 4.Magnel Laboratory for Concrete ResearchGhent UniversityZwijnaardeBelgium
  5. 5.Laboratoire de Génie Civil et Génie MécaniqueINSA-RennesRennes Cedex 7France
  6. 6.Department of Civil EngineeringUniversity of TorontoTorontoCanada
  7. 7.School of Natural and Built EnvironmentQueen’s University BelfastBelfastUK
  8. 8.Structural Mechanics and Building Materials, Technology Cluster Construction, Department of Civil EngineeringKU LeuvenGhentBelgium

Personalised recommendations