An Explicit Theory of Heights for Hyperelliptic Jacobians of Genus Three

  • Michael Stoll


We develop an explicit theory of Kummer varieties associated to Jacobians of hyperelliptic curves of genus 3, over any field k of characteristic ≠ 2. In particular, we provide explicit equations defining the Kummer variety \(\mathscr {K}\) as a subvariety of Open image in new window , together with explicit polynomials giving the duplication map on Open image in new window . A careful study of the degenerations of this map then forms the basis for the development of an explicit theory of heights on such Jacobians when k is a number field. We use this input to obtain a good bound on the difference between naive and canonical height, which is a necessary ingredient for the explicit determination of the Mordell-Weil group. We illustrate our results with two examples.


Kummer variety Hyperelliptic curve Genus 3 Canonical height 

Subject Classifications:

14H40 14H45 11G10 11G50 14Q05 14Q15 



I would like to thank Steffen Müller for helpful comments on a draft version of this paper and for pointers to the literature. The necessary computations were performed using the Magma computer algebra system [1].


  1. 1.
    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)MathSciNetCrossRefGoogle Scholar
  2. 2.
    N. Bruin, M. Stoll, The Mordell-Weil sieve: proving non-existence of rational points on curves. LMS J. Comput. Math. 13, 272–306 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, Sz. Tengely, Integral points on hyperelliptic curves. Algebra & Number Theory 2(8), 859–885 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    J.W.S. Cassels, E.V. Flynn, Prolegomena to a Middlebrow Arithmetic of Curves of Genus 2 (Cambridge University Press, Cambridge, 1996)CrossRefGoogle Scholar
  5. 5.
    S. Duquesne, Calculs effectifs des points entiers et rationnels sur les courbes, Thèse de doctorat, Université Bordeaux, 2001Google Scholar
  6. 6.
    E.V. Flynn, N.P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent. Acta Arith. 79(4), 333–352 (1997)MathSciNetCrossRefGoogle Scholar
  7. 7.
    M. Hindry, J.H. Silverman, Diophantine Geometry. An Introduction. Springer GTM, vol. 201 (Springer, New York, 2000)CrossRefGoogle Scholar
  8. 8.
    D. Holmes, Computing Néron–Tate heights of points on hyperelliptic Jacobians. J. Number Theory 132(6), 1295–1305 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    J.S. Müller, Computing canonical heights on Jacobians, PhD thesis, Universität Bayreuth, 2010Google Scholar
  10. 10.
    J.S. Müller, Computing canonical heights using arithmetic intersection theory. Math. Comput. 83, 311–336 (2014)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J.S. Müller, Explicit Kummer varieties of hyperelliptic Jacobian threefolds. LMS J. Comput. Math. 17, 496–508 (2014)MathSciNetCrossRefGoogle Scholar
  12. 12.
    J.S. Müller, M. Stoll, Canonical heights on genus two Jacobians. Algebra & Number Theory 10(10), 2153–2234 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D. Mumford, On the equations defining abelian varieties. I. Invent. Math. 1, 287–354 (1966)MathSciNetCrossRefGoogle Scholar
  14. 14.
    M. Stoll, On the height constant for curves of genus two. Acta Arith. 90, 183–201 (1999)MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves. Acta Arith. 98, 245–277 (2001)MathSciNetCrossRefGoogle Scholar
  16. 16.
    M. Stoll, On the height constant for curves of genus two, II. Acta Arith. 104, 165–182 (2002)MathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Stoll, Magma files with relevant data,
  18. 18.
    A.G.J. Stubbs, Hyperelliptic curves, PhD thesis, University of Liverpool, 2000Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations