Advertisement

The Future of Psychoneuroimmunology: Promises and Challenges

  • Angelos Halaris
  • Karl Bechter
  • Ebrahim Haroon
  • Brain E. Leonard
  • Andrew Miller
  • Carmine Pariante
  • Patricia Zunszain
Chapter

Abstract

This chapter aims to provide an overview of the burgeoning field of psychoneuroimmunology as it relates to psychiatric and neuropsychiatric disorders. It is a relatively young field, having come of age only recently, but the progress that has been made just in the past three decades has exceeded all expectations. It is fair to say that the field has opened up new horizons in our understanding of the complex interrelationships between the immune and nervous systems or as is otherwise referred to as the brain-immune interaction. Hitherto unknown biochemical pathways have been identified, and their complex interactions with neurotransmitters and immune mediators present opportunities for innovative research and identification of new targets for drug development. Biomarkers are being established that hold great promise for more precise diagnostic classification of psychiatric disorders but also understanding of the high comorbidity between specific psychiatric disease entities and a host of medical and neurological diseases. At the same time, immune biomarkers, neurotrophins, and antibodies enable prediction of response and understanding of treatment resistance. Imaging techniques of increasing sophistication hold great promise for visualization of aberrant connectivity and dysfunctional brain circuitry. The goal of practicing personalized psychiatry is now closer to becoming reality than ever before in the history of our specialty. The coauthors of this chapter have each contributed subsections commensurate with their individual expertise.

Keywords

Neuroinflammation Autoimmune encephalitis Kynurenines Stress Glutamate 

References

  1. 1.
    Pariante CM. Psychoneuroimmunology or immunopsychiatry? Lancet Psychiatry. 2015;2(3):197–9.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Halaris A. Inflammation, heart disease and depression. Curr Psychiatry Rep. 2013;15:400.  https://doi.org/10.1007/s11920-013-0400-5.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Halaris A. Neurological disorders, depression and inflammation: is there a common link? Future Neurol. 2015;10(4):327–43.CrossRefGoogle Scholar
  4. 4.
    Halaris A. Inflammation-associated co-morbidity between depression and cardiovascular disease. Curr Top Behav Neurosci. 2017;31:45–70.  https://doi.org/10.1007/7854_2016_28.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Danese A, Pariante CM, Caspi A, Taylor A, Poulton R. Childhood maltreatment predicts adult inflammation in a life-course study. Proc Natl Acad Sci U S A. 2007;104(4):1319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Danese A, Moffitt TE, Pariante CM, Ambler A, Poulton R, Caspi A. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry. 2008;65(4):409–15.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2016;21(5):642–9.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Plant DT, Pawlby S, Sharp D, Zunszain PA, Pariante CM. Prenatal maternal depression is associated with offspring inflammation at 25 years: a prospective longitudinal cohort study. Transl Psychiatry. 2016;6(11):e936.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pawlby S, Hay D, Sharp D, Waters CS, Pariante CM. Antenatal depression and offspring psychopathology: the influence of childhood maltreatment. Br J Psychiatry. 2011;199(2):106–12.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Plant DT, Barker ED, Waters CS, Pawlby S, Pariante CM. Intergenerational transmission of maltreatment and psychopathology: the role of antenatal depression. Psychol Med. 2013;43(3):519–28.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Plant DT, Pariante CM, Sharp D, Pawlby S. Maternal depression during pregnancy and offspring depression in adulthood: role of child maltreatment. Br J Psychiatry. 2015;207(3):213–20.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Du Preez A, Leveson J, Zunszain PA, Pariante CM. Inflammatory insults and mental health consequences: does timing matter when it comes to depression? Psychol Med. 2016;46(10):2041–57.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446–57.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Howren MB, Lamkin DM, Suls J. Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med. 2009;71:171–86.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Valkanova V, Ebmeier KP, Allan CL. CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord. 2013;150(3):736–44.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):46–56.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Schiepers OJ, Wichers MC, Maes M. Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:201–17.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, Craig IW, Anacker C, Zunsztain PA, McGuffin P, Pariante CM. Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline ‘predictors’ and longitudinal ‘targets’. Neuropsychopharmacology. 2013;38(3):377–85.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Carvalho LA, Garner BA, Dew T, Fazakerley H, Pariante CM. Antidepressants, but not antipsychotics, modulate GR function in human whole blood: an insight into molecular mechanisms. Eur Neuropsychopharmacol. 2010;20(6):379–87.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Carvalho LA, Juruena MF, Papadopoulos AS, Poon L, Kerwin R, Cleare AJ, Pariante CM. Clomipramine in vitro reduces glucocorticoid receptor function in healthy subjects but not in patients with major depression. Neuropsychopharmacology. 2008;33(13):3182–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Carvalho LA, Torre JP, Papadopoulos AS, Poon L, Juruena MF, Markopoulou K, Cleare AJ, Pariante CM. Lack of clinical therapeutic benefit of antidepressants is associated overall activation of the inflammatory system. J Affect Disord. 2013;148(1):136–40.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Nikkheslat N, Zunszain PA, Horowitz MA, Barbosa IG, Parker JA, Myint AM, Schwarz MJ, Tylee AT, Carvalho LA, Pariante CM. Insufficient glucocorticoid signaling and elevated inflammation in coronary heart disease patients with comorbid depression. Brain Behav Immun. 2015;48:8–18.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Cattaneo A, Ferrari C, Uher R, Bocchio-Chiavetto L, Riva MA, Pariante CM, MRC ImmunoPsychiatry Consortium. Absolute measurements of macrophage migration inhibitory factor and interleukin-1-β mRNA levels accurately predict treatment response in depressed patients. Int J Neuropsychopharmacol. 2016;19(10):pyw045.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Hepgul N, Cattaneo A, Zunszain PA, Pariante CM. Depression pathogenesis and treatment: what can we learn from blood mRNA expression? BMC Med. 2013;11:28.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Hepgul N, Cattaneo A, Agarwal K, Baraldi S, Borsini A, Bufalino C, Forton DM, Mondelli V, Nikkheslat N, Lopizzo N, Riva MA, Russell A, Hotopf M, Pariante CM. Transcriptomics in interferon-α-treated patients identifies inflammation, neuroplasticity- and oxidative stress-related signatures as predictors and correlates of depression. Neuropsychopharmacology. 2016;41(10):2502–11.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Leonard BE. Brain cytokines and the psychopathology of depression. In: Leonard BE, editor. Antidepressants. Basel: Birkhauser Verlag; 2001. p. 109–20.CrossRefGoogle Scholar
  27. 27.
    Mendelson SD. The current status of the platelet 5-HT (2A) receptor in depression. J Affect Disord. 2000;57:13–24.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Hrdina PD, Bakish D, Chudzik J, Ravindran A, Lapierre YD. Serotonergic markers in platelets of patients with major depression: upregulation of 5-HT2 receptors. J Psychiatry Neurosci. 1995;20:11–9.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Neuger J, El Khoury A, Kjellman BF, Wahlund B, Aberg-Wistedt A, Stain-Malgren R. Platelet serotonin functions in untreated major depression. Psychiatry Res. 1999;85:189–98.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Shimbo D, Child J, Davidson K, Geer E, Osende JI, Reddy S, et al. Exaggerated serotonin-mediated platelet reactivity as a possible link in depression and acute coronary syndromes. Am J Cardiol. 2002;89:331–3.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Whyte EM, Pollock BG, Wagner WR, Mulsant BH, Ferrell RE, Mazumdar S, et al. Influence of serotonin-transporter-linked promoter region polymorphism on platelet activation in geriatric depression. Am J Psychiatry. 2001;158:2074–6.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Palazzolo DL, Quadri SK. Interleukin-1 inhibits serotonin release from the hypothalamus in vitro. Life Sci. 1992;51:1797–802.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Zhu CB, Blakely RD, Hewlett WA. The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology. 2005;31:2121–31.Google Scholar
  34. 34.
    Kop WJ, Gottdiener JS, Tangen CM, Fried LP, McBurnie MA, Walston J. Inflammation and coagulation factors on persons >65 years of age with symptoms of depression but without evidence of myocardial ischemia. Am J Cardiol. 2002;89:419–24.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Maes M, der Planken V, Van Gastel A, Desnyder R. Blood coagulation and platelet aggression in major depression. J Affect Disord. 1996;40:35–40.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Musselman DL, Miller AH, Porter MR, Manatunga A, Gao F, Penna S. Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings. Am J Psychiatry. 2001;158:1252–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Christmas DM, Potokar JP, Davies SJC. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase. Neuropsychiatr Dis Treat. 2011;7:431–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Wichers M, Maes M. The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans. Int J Neuropsychopharmacol. 2002;5:375–88.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Myint AM, Kim YK, Verkerk R, Scharpé S, Steinbusch HWM, Leonard BE. Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord. 2007;89(1):143–51.CrossRefGoogle Scholar
  40. 40.
    Myint AM, Kim YK. Cytokine-serotonin interaction through IDO; a neurodegeneration hypothesis of depression. Med Hypotheses. 2003;61(5–6):519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Miller CL, Llenos IC, Dulay JR, Weis S. Upregulation of the initiating step of the kynurenine pathway in postmortem anterior cingulate cortex from individuals with schizophrenia and bipolar disorder. Brain Res. 2006;1073–1074:25–37.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Myint AM, Kim YK, Verkerk R, Park SH, Scharpe S, Steinbusch HW, et al. Tryptophan breakdown pathway in bipolar mania. J Affect Disord. 2007;102(1–3):65–72.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Lapin IP, Oxenkrug GF. Identification of central serotonergic processes as possible determinators of the thymoleptic affect. Lancet. 1969;1:32–9.Google Scholar
  44. 44.
    Lapin IP. Kynurenines as probable participants in depression. Pharmacopsychiatr Neuropsychopharmakol. 1973;6:273–9.CrossRefGoogle Scholar
  45. 45.
    Gal EM, Sherman AD. L-kynurenine: its synthesis and possible regulatory function in brain. Neurochem Res. 1980;5:223–39.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Perkins MN, Stone TW. An iontophoretic investigation of the action of convulsant kynurenines and their interaction with endogenous excitant quinolinic acid. Brain Res. 1982;247:184–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Steiner J, Bielau H, Brisch R, et al. Immunological aspects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008;42:151–7.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Han Q, Tao DA, Li J. Structure, expression and function of kynurenine aminotransferase in human and rodent brain. Cell Mol Life Sci. 2010;67:353–68.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Oxenkrug GF. Insulin resistance and dysregulation of the tryptophan-kynurenine-NAD pathway. Mol Neurobiol. 2013;48:294–301.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Sas K, Robotka H, Toldie J, Vecsei L. Mitochondria metabolic disturbance, oxidative stress and the kynurenine system with a focus on neurodegenerative disorders. J Neurol Sci. 2009;257:221–39.CrossRefGoogle Scholar
  51. 51.
    Barnes J, Mondelli V, Pariante CM. Genetic contributions of inflammation to depression. Neuropsychopharmacology. 2017;42(1):81–98.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Bull SJ, Huezo-Diaz P, Binder EB, Cubells JF, Ranjith G, Maddock C, Miyazaki C, Alexander N, Hotopf M, Cleare AJ, Norris S, Cassidy E, Aitchison KJ, Miller AH, Pariante CM. Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-alpha and ribavirin treatment. Mol Psychiatry. 2009;14(12):1095–104.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Su KP, Huang SY, Peng CY, Lai HC, Huang CL, Chen YC, Aitchison KJ, Pariante CM. Phospholipase A2 and cyclooxygenase 2 genes influence the risk of interferon-alpha-induced depression by regulating polyunsaturated fatty acids levels. Biol Psychiatry. 2010;67(6):550–7.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Geerlings MT, Schoevers RA, Beckman AT, et al. Depression and risk of cognitive decline and Alzheimer’s disease. Br J Psychiatry. 2000;176:568–75.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Visser PJ, Verhey FR, Ponds RW, et al. Distinction between preclinical Alzheimer’s disease and depression. Am J Geriatr Soc. 2000;48:479–84.CrossRefGoogle Scholar
  56. 56.
    Modrego PJ, Fernandez J. Depression in patients with mild cognitive impairment increases the risk of developing dementia of the Alzheimer type. Arch Neurol. 2004;61:1290–3.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Steffens DC, Plassman BL, Helms MJ, et al. A twin study of late onset depression and apolipoprotein E4 as risk factors for Alzheimer’s disease. Biol Psychiatry. 1997;41:851–6.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Kang J, Lemaire HG, Unterbeck A, et al. The precursor of Alzheimer’s disease, amyloid A4 protein, resembles a cell surface receptor. Nature. 1987;325(6106):733–6.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Maes M, Bosmans E, De Jongh R, et al. Increased serum IL-6and IL-1R antagonist concentrations in major depression and treatment resistant depression. Cytokine. 1997;9:853–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress pathways in major depression and their possible contribution to the neurodegenerative process in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:676–92.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Finch CE, Morgan TE. Systematic inflammation, infection, ApoE alleles and Alzheimer’s disease a position paper. Curr Alzheimer Res. 2007;4:185–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bloom GS. Amyloid beta and tau: the trigger and bullet in Alzheimer’s disease. JAMA Neurol. 2014;71:505–8.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Margarinos AM, McEwen BS, Flugge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippocampal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci. 1996;16:3534–40.CrossRefGoogle Scholar
  64. 64.
    Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10:2897–902.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    McEwen BS. Possible mechanisms for atrophied human hippocampus. Mol Psychiatry. 1997;2:255–62.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Ragnarsson O, Berglund P, Eder DN, Johannsson G. Long-term cognitive impairments and attentional deficits in patients with Cushing’s disease and cortisol producing adrenal adenoma in remission. J Clin Endocrinol Metab. 2012;97:1640–8.CrossRefGoogle Scholar
  67. 67.
    Sapolsky RM. Stress, glucocorticoids and damage to the nervous system: the current state of confusion. Stress. 1996;1:1–19.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gilbertson HW, Sherton ME, Ciszewski A, et al. Smaller hippocampal volume predicts pathological vulnerability to psychological trauma. Nat Neurosci. 2002;5:1242–7.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Attwood CS, Obrenovich ME, Liu T, et al. Amyloid beta; a chameleon walking in two worlds: a review of the trophic and toxic properties of beta amyloid. Brain Res Rev. 2003;43:1–16.CrossRefGoogle Scholar
  70. 70.
    Delpech J-C, Madoc C, Nadjar A, et al. Microglia in neuronal plasticity: influence of stress. Neuropharmacology. 2015;96:19–28.  https://doi.org/10.1016/j.neuropharm.2014.12.034.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Rapp MA, Dahlman K, Sano M, et al. Neuropsychological differences between late-onset and recurrent geriatric major depression. Am J Psychiatry. 2005;162:691–8.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Rapp MA, Schneider-Beeri M, Grossman HT, et al. Increased hippocampal plaques and tangles in patients with Alzheimer’s disease with a life-long history of major depression. Arch Gen Psychiatry. 2006;63:161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38:145–57.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gillespie MT, Horwood NJ. IL-18: perspectives on the newest interleukin. Cytokine Growth Factor Rev. 1998;9:109–16.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Ojala J, Alafuzoff I, Herukka SK, et al. Expression of IL-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging. 2009;30:198–209.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jurcoicova J. Glucose transport in brain: effect of inflammation for neurologic disease. Neurol Endocrin Regul. 2014;48:35–48.CrossRefGoogle Scholar
  77. 77.
    Yu JT, Tau L, Song JH, et al. Il-18 promotes polymorphisms and risk of late Alzheimer’s disease. Brain Res. 2009;1253:169–75.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Castren E, Rautamaki T. The role of BDNF and its receptors in depression and antidepressant drug action: reactivation of developmental plasticity. Dev Neurobiol. 2010;70:289–97.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Chou YH, Ling JF, Hsieh WC, et al. Neither cortisol nor BDNF is associated with serotonin transport in bipolar disorder. Eur J Neuropharmacol. 2015;26(2):280–7.  https://doi.org/10.1016/j.euroneuro2015.12.011.
  80. 80.
    Kapczinski F, Frey BN, Kauer-Sant’Anna M, Grassi-Oliveia B. Brain-derived neurotrophic factors and neuroplasticity in bipolar disorder. Exp Rev Neurother. 2008;8(7):1101–13.  https://doi.org/10.1586/14737175.8.7.1101.CrossRefGoogle Scholar
  81. 81.
    Leonard BE, Myint A-M. Inflammation and depression: is there a causal connection with dementia? Neurotox Res. 2006;10:149–60.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Khansari PS, Sperlagh B. Inflammation in neurological and psychiatric diseases. Inflammopharmacology. 2012;20:103–7.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Lyman M, Lloyd DG, Ji X, Vizcaychipi MP, Ma D. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    McEwen BS. Stress, adaptation, and disease allostasis and allostatic load. Ann N Y Acad Sci. 1998;840(1):33–4.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Chakraborty S, Kaushik DK, Gupta M, Basu A. Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res. 2010;88(8):1615–31.PubMedPubMedCentralGoogle Scholar
  86. 86.
    Singhal G, Jaehne EJ, Corrigan F, Toben C, Baune BT. Inflammasomes in neuroinflammation and changes in brain function: a focused review. Front Neurosci. 2014;8:1–13.CrossRefGoogle Scholar
  87. 87.
    Kipp M, Norkute A, Johann S, et al. Brain-region-specific astroglial responses in vitro after LPS exposure. J Mol Neurosci. 2008;35:235–43.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Insel TR. Rethinking schizophrenia. Nature. 2010;468:187–93.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bechter K. Diagnosis of infectious or inflammatory psychosyndromes. Open Neurol J. 2012;6(Suppl 1-M6):113–8.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Bachmann S, Degen C, Geider FJ, Schröder J. Neurological soft signs in the clinical course of schizophrenia: results of a meta-analysis. Front Psychiatry. 2014;5:185.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Bechter K. Updating the mild encephalitis hypothesis of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42:71–91.CrossRefGoogle Scholar
  92. 92.
    Dalmau J, Lancaster E, Martinez-Hernandez E, Rosenfeld MR, Balice-Gordon R. Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol. 2011;10:63–74.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Herken J, Pruess H. Red flags: clinical signs for identifying autoimmune encephalitis in psychiatric patients. Front Psychiatry. 2017;8:25.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lang K, Prüß H. Anti-NMDA-Rezeptor-Enzephalitis eine wichtige Differenzialdiagnose. InFo Neurol Psychiatr. 2016;18:7–8.CrossRefGoogle Scholar
  95. 95.
    Lennox BR, Coles AJ, Vincent A. Antibody-mediated encephalitis: a treatable cause of schizophrenia. Br J Psychiatry. 2012;200(2):92–4.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Steiner J, Walter M, Glanz W, Sarnyai Z, Bernstein HG, Vielhaber S, et al. Increased prevalence of diverse N-methyl-D-aspartate glutamate receptor antibodies in patients with an initial diagnosis of schizophrenia: specific relevance of IgG NR1a antibodies for distinction from N-methyl-D-aspartate glutamate receptor encephalitis. JAMA Psychiatry. 2013;70(3):271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Ehrenreich H, Castillo-Gomez E, Oliveira B, Ott C, Steiner J, Weissenborn K. Circulating NMDAR1 autoantibodies of different immunoglobulin classes modulate evolution of lesion size in acute ischemic stroke. Neurol Psychiatry Brain Res. 2016;22:9–10.CrossRefGoogle Scholar
  98. 98.
    Hammer C, Stepniak B, Schneider A, Papiol S, Tantra M, Begemann M, et al. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol Psychiatry. 2013;19:1143–9.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Hammer C, Zerche M, Schneider A, Begemann M, Nave KA, Ehrenreich H. Apolipoprotein E4 carrier status plus circulating anti-NMDAR1 autoantibodies: association with schizoaffective disorder. Mol Psychiatry. 2014;19:1045–56.Google Scholar
  100. 100.
    Najjar S, Pearlman D, Devinsky O, Najjar A, Nadkarni S, Butler T, et al. Neuropsychiatric autoimmune encephalitis without VGKC-complex, NMDAR, and GAD autoantibodies: case report and literature review. Cogn Behav Neurol. 2013;26(1):36–49.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kreye J, Wenke NK, Chayka M, Leubner J, Murugan M, Maier N, et al. Human cerebrospinal fluid monoclonal N-methyl-aspartate-receptor autoantibodies are sufficient for encephalitis pathogenesis. Brain. 2016;139:2641–52.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Schwarz E, van Beveren NJM, Ramsey J, Leweke FM, Rothermundt M, Bogerts B, et al. Identification of subgroups of schizophrenia patients with changes in either immune or growth factor and hormonal pathway. Schizophr Bull. 2014;40(4):787–95.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Myint AM, Kim YK. Network beyond IDO in psychiatric disorders: revisiting neurodegeneration hypothesis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:304–13.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Leboyer M, Tamouza R, Charron D, Faucard R, Perron H. Human endogenous retrovirus type W (HERV-W) in schizophrenia: a new avenue of research at the gene-environment interface. World J Biol Psychiatry. 2013;14(2):80–90.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Müller N, Riedel M, Blendinger C, Oberle K, Jacobs E, Abele-Horn M. Mycoplasma pneumoniae infection and Tourette’s syndrome. Psychiatry Res. 2004;129:119–25.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Bay-Richter C, Linderholm KR, Lim CK, Samuelsson M, Träskman-Bendz L, Guillemin GJ, et al. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015;43:110–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Fernandez BS, Steiner J, Molendijk ML, Dodd S, Nardin P, Goncalves C-A, et al. C-reactive protein concentrations across the mood spectrum in bipolar disorder: a systematic review and meta-analysis. Lancet Psychiatry. 2016;3(12):1147–56.CrossRefGoogle Scholar
  108. 108.
    Czepielewski LS, Wang L, Gama CS, Barch DM. The relationship of intellectual functioning and cognitive performance to brain structure in schizophrenia. Schizophr Bull. 2016;43(2):355–64.  https://doi.org/10.1093/schbull/sbw090.CrossRefPubMedCentralGoogle Scholar
  109. 109.
    Houenou J, d’Albis MA, Daban C, Hamdani N, Delavest M, Lepine JP, et al. Cytomegalovirus seropositivity and serointensity are associated with hippocampal volume and verbal memory in schizophrenia and bipolar disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2014;48:142–8.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Debnath M, Berk M. Functional implications of the IL-23/IL-17 immune axis in schizophrenia. Mol Neurobiol. 2016.  https://doi.org/10.1007/s12035-016-0309-1.
  111. 111.
    Anderson G, Berk M, Dodd SK, Bechter AC, Altamura B, Dell'Osso S, Kanba A, Monji SH, Fatemi P, Buckley M, Debnath UN, Das U, Meyer N, Müller B, Kanchanatawan B, Maes M. Immuno-inflammatory, oxidative and nitrosative stress, and neuroprogressive pathways in the etiology, course and treatment of schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;42(C):1–4.CrossRefGoogle Scholar
  112. 112.
    Doorduin J, deVries EF, Willemsen AT, deGroot JC, Dierckx RA, Klein HC. Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med. 2009;50:1801–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sekar A, Bialas A, de Rivera H, Davis A, Hammond T, Kamitaki N, et al. Schizophrenia risk from complex variation of complement component. Nature. 2016;530:177–83.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Davis J, Moylan S, Harvey BH, Maes M, Berk M. Neuroprogression in schizophrenia: pathways underpinning clinical staging and therapeutic corollaries. Aust N Z J Psychiatry. 2014;48(6):512–29.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Cannon TD, Chung Y, He G, Sun D, Jacobson A, van Erp TGM, et al. Progressive reduction in cortical thickness as psychosis develops: a multisite longitudinal neuroimaging study of youth at elevated clinical risk. Biol Psychiatry. 2015;77:147–57.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Cannon TD. Microglial activation and the onset of psychosis. Am J Psychiatry. 2016;173:3–4.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Benros ME, Mortensen PB, Eaton WW. Autoimmune diseases and infections as risk factors for schizophrenia. Ann N Y Acad Sci. 2012;1262:65–6.CrossRefGoogle Scholar
  118. 118.
    Benros ME, Waltoft BL, Nordentoft M, Ostergaard SD, Eaton WW, Krogh J, Mortensen PB. Autoimmune diseases and severe infections as risk factors for mood disorders: a nationwide study. JAMA Psychiatry. 2013;70(8):812–20.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Bechter K. Mild encephalitis underlying psychiatric disorder – a reconsideration and hypothesis exemplified on Borna disease. Neurol Psyciatry Brain Res. 2001;9:55–70.Google Scholar
  120. 120.
    Bakken TE, Miller JA, Ding S-L, Sunkin SM, Smith KA, Ng L, et al. A comprehensive transcriptional map of primate brain development. Nature. 2016;535:367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bechter K, Herzog S, Behr W, Schüttler R. Investigations of cerebrospinal fluid in Borna disease virus seropositive psychiatric patients. Eur Psychiatry. 1995;10:250–8.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Bechter K, et al. Cerebrospinal fluid analysis in affective and schizophrenic spectrum disorders: identification of subgroups with immune responses and blood–CSF barrier dysfunction. J Psychiatr Res. 2010;44(5):321–30.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Endres D, Perlov E, Baumgartner A, Hottenrott T, Dersch R, Stich O, et al. Immunological findings in psychotic syndromes: a tertiary care hospital’s CSF sample of 180 patients. Front Hum Neurosci. 2015;9:476.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Endres D, Perlov E, Dersch R, Baumgartner A, Hottenrott T, Berger B, et al. Evidence of cerebrospinal fluid abnormalities in patients with depressive syndromes. J Affect Disord. 2016;198:178–84.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Endres D, Dersch R, Hottenrott T, Perlov E, Maier S, van Calker D, Hochstuhl B, Venhoff N, Stich O, Tebartz van Elst L. Alterations in cerebrospinal fluid in patients with bipolar syndromes. Front Psychiatry. 2016;7:194.PubMedPubMedCentralGoogle Scholar
  126. 126.
    Vasic N, Connemann BJ, Wolf RC, Tumani H, Brettschneider J. Cerebrospinal fluid biomarker candidates of schizophrenia: where do we stand? Eur Arch Psychiatry Clin Neurosci. 2012;262(5):375–91.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Bechter K. CSF diagnostics in psychiatry-present status-future developments. Neurol Psychiatry Brain Res. 2016;22:69–74.CrossRefGoogle Scholar
  128. 128.
    Johansson V, Nybom R, Wetterberg L, Hultman CM, Cannon TD, Johansson GM, Ekman CJ, Landen M. Microscopic particles in two fractions of fresh cerebrospinal fluid in twins with schizophrenia or bipolar disorder and in healthy controls. PLoS One. 2012;7(9):e45994.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Schneider EM, Bechter K, Strunz M, Mostafa H, Zink F, Fuchs D, Loewe R. Characterization of microparticles derived from cultured macrophages and cerebrospinal fluid of patients with schizophrenic and affective disorders. Neurol Psychiatry Brain Res. 2016;22:19.CrossRefGoogle Scholar
  130. 130.
    Borroto-Escuela DO, Agnati LF, Bechter K, Jansson A, Tarakanov AO, Fuxe K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural–glial networks. Philos Trans R Soc B. 2015;370:20140183.CrossRefGoogle Scholar
  131. 131.
    Baruch K, Deczkowska A, David E, Castellano JM, Miller O, Kertser A, et al. Aging-induce type I interferon response at the choroid plexus negatively affects brain function. Science. 2014;346(6205):89–93.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, Overall CC, et al. Unexpected role of interferon-g in regulating neuronal connectivity and social behavior. Nature. 2016;535:425–9.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Bogerts B, Winopal D, Schwarz S, Schlaaff K, Dobrowolny H, Mawrin C, Frodl T, Steiner J. Evidence of neuroinflammation in subgroups of schizophrenia and mood disorder patients: a semiquantitative postmortem study of CD3 and CD20 immunoreactive lymphocytes in several brain regions. Neurol Psychiatry Brain Res. 2017;23:2–9.CrossRefGoogle Scholar
  134. 134.
    Berk M, Conus P, Kapczinski F, Andreazza AC, Yucel M, Wood SJ, et al. From neuroprogression to neuroprotection: implications for clinical care. Med J Aust. 2010;193(4 Suppl):S36–40.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. 2013;18(5):595–606.PubMedCrossRefGoogle Scholar
  136. 136.
    Di Nicola M, Cattaneo A, Hepgul N, Di Forti M, Aitchison KJ, Janiri L, Murray RM, Dazzan P, Pariante CM, Mondelli V. Serum and gene expression profile of cytokines in first-episode psychosis. Brain Behav Immun. 2013;31:90–5.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Handley R, Mondelli V, Zelaya F, Marques T, Taylor H, Reinders AA, Chaddock C, McQueen G, Hubbard K, Papadopoulos A, Williams S, McGuire P, Pariante C, Dazzan P. Effects of antipsychotics on cortisol, interleukin-6 and hippocampal perfusion in healthy volunteers. Schizophr Res. 2016;174(1–3):99–105.PubMedCrossRefGoogle Scholar
  138. 138.
    Hepgul N, Pariante CM, Dipasquale S, DiForti M, Taylor H, Marques TR, Morgan C, Dazzan P, Murray RM, Mondelli V. Childhood maltreatment is associated with increased body mass index and increased C-reactive protein levels in first-episode psychosis patients. Psychol Med. 2012;42(9):1893–901.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Mondelli V, Cattaneo A, Murri MB, Di Forti M, Handley R, Hepgul N, Miorelli A, Navari S, Papadopoulos AS, Aitchison KJ, Morgan C, Murray RM, Dazzan P, Pariante CM. Stress and inflammation reduce brain-derived neurotrophic factor expression in first-episode psychosis: a pathway to smaller hippocampal volume. J Clin Psychiatry. 2011;72(12):1677–84.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Mondelli V, Ciufolini S, Belvederi Murri M, Bonaccorso S, Di Forti M, Giordano A, Marques TR, Zunszain PA, Morgan C, Murray RM, Pariante CM, Dazzan P. Cortisol and inflammatory biomarkers predict poor treatment response in first episode psychosis. Schizophr Bull. 2015;41(5):1162–70.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Russell A, Ciufolini S, Gardner-Sood P, Bonaccorso S, Gaughran F, Dazzan P, Pariante CM, Mondelli V. Inflammation and metabolic changes in first episode psychosis: preliminary results from a longitudinal study. Brain Behav Immun. 2015;49:25–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Bale TL, Baram TZ, Brown AS, Goldstein JM, Insel TR, McCarthy MM, Nemeroff CB, Reyes TM, Simerly RB, Susser ES, Nestler EJ. Early life programming and neurodevelopmental disorders. Biol Psychiatry. 2010;68(4):314–9.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Cattaneo AF, Macchi G, Plazzotta B, Veronica L, Bocchio-Chiavetto MA, Riva C, Pariante M. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci. 2015;9:40.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    McDade TW. Early environments and the ecology of inflammation. Proc Natl Acad Sci. 2012;109(2):17281–8.PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Bilbo SD. Early-life programming of later-life brain and behavior: a critical role for the immune system. Front Behav Neurosci. 2009;3:14.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry. 2012;18(5):595–606.PubMedCrossRefPubMedCentralGoogle Scholar
  147. 147.
    Netea MG, Latz E, Mills KHG, O’Neill LAJ. Innate immune memory: a paradigm shift in understanding host defense. Nat Immunol. 2015;16(7):675–9.PubMedCrossRefPubMedCentralGoogle Scholar
  148. 148.
    Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144:365–73.PubMedCentralCrossRefGoogle Scholar
  149. 149.
    Felger JC, Li Z, Haroon E, Woolwine BJ, Jung MY, Hu X, et al. Inflammation is associated with decreased functional connectivity within corticostriatal reward circuitry in depression. Mol Psychiatry. 2016;21(10):1358–65.PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Miller AH, Haroon E, Raison CL, Felger JC. Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety. 2013;30(4):297–306.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Cowen PJ. Not fade away: the HPA axis and depression. Psychol Med. 2010;40:1–4.PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Stetler C, Miller GE. Depression and HPA activation: a quantitative summary of 4 decades of research. Psychosom Med. 2011;73:114–26.PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    McEwen BS. Protective and damaging effects of stress mediators: central role of the brain. Dial Clin Neurosci. 2006;8:367–81.Google Scholar
  154. 154.
    Duman RS. Depression: a case of a neuronal life and death? Biol Psychiatry. 2004;56:140–5.PubMedCrossRefGoogle Scholar
  155. 155.
    Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–5.PubMedCrossRefGoogle Scholar
  156. 156.
    Davis KL, Davis BM, Greenwald BS, et al. Cortisol and Alzheimer’s disease: Basal studies. Am J Psychiatry. 1986;143:300–5.PubMedCrossRefGoogle Scholar
  157. 157.
    Hartmann A, Veldhuis JD, Deuschle M, et al. Twenty-four hour cortisol release profiles in patients with Alzheimer’s disease and Parkinson’s disease compared to normal controls in ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 1997;18:285–9.PubMedCrossRefGoogle Scholar
  158. 158.
    Peskind ER, Wilkinson CW, Petrie EC, et al. Increased CSF cortisol is a function of ApoE genotype. Neurology. 2001;56:1094–8.PubMedCrossRefGoogle Scholar
  159. 159.
    Munkholm K, Brauner JV, Kessing LV, Vinberg M. Cytokines in bipolar disorder vs. healthy control subjects: a systematic review and meta-analysis. J Psychiatr Res. 2013;47(9):1119–33.PubMedCrossRefGoogle Scholar
  160. 160.
    Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology. 2012;37(1):137–62.PubMedCrossRefGoogle Scholar
  161. 161.
    Halaris A, Meresh E, Sharma A, Alvi N, Sinacore J. Inflammation control augments antidepressant response in bipolar depression. Brain Behav Immun. 2013;32:e26.CrossRefGoogle Scholar
  162. 162.
    Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, et al. A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry. 2013;70(1):31–41.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Berk M, Kapczinski F, Andreazza AC, Dean OM, Giorlando F, Maes M, et al. Pathways underlying neuroprogression in bipolar disorder: focus on inflammation, oxidative stress and neurotrophic factors. Neurosci Biobehav Rev. 2011;35(3):804–17.PubMedCrossRefGoogle Scholar
  164. 164.
    Miller AH, Haroon E, Felger JC. Therapeutic implications of brain-immune interactions: treatment in translation. Neuropsychopharmacology. 2017;42(1):334–59.PubMedCrossRefGoogle Scholar
  165. 165.
    Braitenberg V, Schüz A. Cortex: statistics and geometry of neuronal connectivity. Berlin Heidelberg: Springer Science & Business Media; 2013.Google Scholar
  166. 166.
    Danbolt NC. Glutamate uptake. Prog Neurobiol. 2001;65(1):1–105.PubMedCrossRefGoogle Scholar
  167. 167.
    Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215.PubMedCrossRefGoogle Scholar
  168. 168.
    Sanacora G, Banasr M. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol Psychiatry. 2013;73(12):1172–9.PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Capuron L, Neurauter G, Musselman DL, Lawson DH, Nemeroff CB, Fuchs D, et al. Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biol Psychiatry. 2003;54(9):906–14.PubMedCrossRefGoogle Scholar
  170. 170.
    Raison CL, Borisov AS, Woolwine BJ, Massung B, Vogt G, Miller AH. Interferon-alpha effects on diurnal hypothalamic-pituitary-adrenal axis activity: relationship with proinflammatory cytokines and behavior. Mol Psychiatry. 2010;15(5):535–47.PubMedCrossRefGoogle Scholar
  171. 171.
    Haroon E, Woolwine BJ, Chen X, Pace TW, Parekh S, Spivey JR, et al. IFN-alpha-induced cortical and subcortical glutamate changes assessed by magnetic resonance spectroscopy. Neuropsychopharmacology. 2014;39(7):1777–85.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Haroon E, Felger JC, Woolwine BJ, Chen X, Parekh S, Spivey JR, et al. Age-related increases in basal ganglia glutamate are associated with TNF, reduced motivation and decreased psychomotor speed during IFN-alpha treatment: preliminary findings. Brain Behav Immun. 2015;46:17–22.PubMedCrossRefGoogle Scholar
  173. 173.
    Godbout JP, Johnson RW. Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Immunol Allergy Clin N Am. 2009;29(2):321–37.CrossRefGoogle Scholar
  174. 174.
    Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology. 2017;42(1):318–33.PubMedCrossRefGoogle Scholar
  175. 175.
    Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N. Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun. 2014;42:50–9.PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, et al. Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry. 2016;21(10):1351–7.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107(3):363–9.PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Ridker PM. From C-reactive protein to interleukin-6 to interleukin-1: moving upstream to identify novel targets for atheroprotection. Circ Res. 2016;118(1):145–56.PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Dantzer R, Kelley KW. Twenty years of research on cytokine-induced sickness behavior. Brain Behav Immun. 2007;21(2):153–60.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, et al. NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology. 2013;38(9):1609–16.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Iwata M, Ota KT, Duman RS. The inflammasome: pathways linking psychological stress, depression, and systemic illnesses. Brain Behav Immun. 2013;31:105–14.PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Iwata M, Ota KT, Li XY, Sakaue F, Li N, Dutheil S, et al. Psychological stress activates the inflammasome via release of adenosine triphosphate and stimulation of the purinergic type 2X7 receptor. Biol Psychiatry. 2016;80(1):12–22.PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Banasr M, Duman RS. Glial loss in the prefrontal cortex is sufficient to induce depressive-like behaviors. Biol Psychiatry. 2008;64(10):863–70.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    Bernard R, Kerman IA, Thompson RC, Jones EG, Bunney WE, Barchas JD, et al. Altered expression of glutamate signaling, growth factor, and glia genes in the locus coeruleus of patients with major depression. Mol Psychiatry. 2011;16(6):634–46.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Mechawar N, Savitz J. Neuropathology of mood disorders: do we see the stigmata of inflammation? Transl Psychiatry. 2016;6(11):e946.PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Ongur D, Bechtholt AJ, Carlezon WA Jr, Cohen BM. Glial abnormalities in mood disorders. Harv Rev Psychiatry. 2014;22(6):334–7.PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Rajkowska G, Stockmeier CA. Astrocyte pathology in major depressive disorder: insights from human postmortem brain tissue. Curr Drug Targets. 2013;14(11):1225–36.PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Miller BJ, Goldsmith DR. Towards an immunophenotype of schizophrenia: progress, potential mechanisms, and future directions. Neuropsychopharmacology. 2017;42(1):299–317.PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Muller B, et al. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11(7):680–4.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Na KS, Lee KJ, Lee JS, Cho YS, Jung HY. Efficacy of adjunctive celecoxib treatment for patients with major depressive disorder: a meta-analysis. Prog Neuro-Psychopharmacol Biol Psychiatry. 2014;48:79–85.CrossRefGoogle Scholar
  191. 191.
    Newport DJ, Carpenter LL, McDonald WM, Potash JB, Tohen M, Nemeroff CB, et al. Ketamine and other NMDA antagonists: early clinical trials and possible mechanisms in depression. Am J Psychiatry. 2015;172(10):950–66.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63(8):856–64.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Hashimoto K. Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci. 2015;16(4):7796–801.PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Machado-Vieira R, Gold PW, Luckenbaugh DA, Ballard ED, Richards EM, Henter ID, et al. The role of adipokines in the rapid antidepressant effects of ketamine. Mol Psychiatry. 2017;22(1):127–33.  https://doi.org/10.1038/mp.2016.36.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Walker AJ, Foley BM, Sutor SL, McGillivray JA, Frye MA, Tye SJ. Peripheral proinflammatory markers associated with ketamine response in a preclinical model of antidepressant-resistance. Behav Brain Res. 2015;293:198–202.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Walker AJ, Kim Y, Price JB, Kale RP, McGillivray JA, Berk M, et al. Stress, inflammation, and cellular vulnerability during early stages of affective disorders: biomarker strategies and opportunities for prevention and intervention. Front Psychiatry. 2014;5:34.PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Mathew S, Fava M, Guerguieva R, Sanacora G, editors. A randomized placebo-controlled adjunctive trial of riluzole in treatment-resistant major depressive disorder – NCT01204918 – efficacy and tolerability of riluzole in treatment resistant depression. ASCP Annual Meeting (NCDEU). Miami, FL, USA; 2015.Google Scholar
  198. 198.
    Niciu MJ, Luckenbaugh DA, Ionescu DF, Richards EM, Vande Voort JL, Ballard ED, et al. Riluzole likely lacks antidepressant efficacy in ketamine non-responders. J Psychiatr Res. 2014;58:197–9.PubMedPubMedCentralCrossRefGoogle Scholar
  199. 199.
    Pittenger C, Coric V, Banasr M, Bloch M, Krystal JH, Sanacora G. Riluzole in the treatment of mood and anxiety disorders. CNS Drugs. 2008;22(9):761–86.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Salardini E, Zeinoddini A, Mohammadinejad P, Khodaie-Ardakani MR, Zahraei N, Zeinoddini A, et al. Riluzole combination therapy for moderate-to-severe major depressive disorder: a randomized, double-blind, placebo-controlled trial. J Psychiatr Res. 2016;75:24–30.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov. 2008;7(5):426–37.PubMedPubMedCentralCrossRefGoogle Scholar
  202. 202.
    Beurel E, Grieco SF, Amadei C, Downey K, Jope RS. Ketamine-induced inhibition of glycogen synthase kinase-3 contributes to the augmentation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor signaling. Bipolar Disord. 2016;18(6):473–80.PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord. 2012;14(5):478–87.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Yuksel C, Ongur D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010;68(9):785–94.PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Jope RS. Glycogen synthase kinase-3 in the etiology and treatment of mood disorders. Front Mol Neurosci. 2011;4:16.PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, et al. Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry. 2002;7(Suppl 1):S71–80.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Machado-Vieira R, Manji HK, Zarate CA Jr. The role of lithium in the treatment of bipolar disorder: convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disord. 2009;11(Suppl 2):92–109.PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    Frye MA, Watzl J, Banakar S, O’Neill J, Mintz J, Davanzo P, et al. Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology. 2007;32(12):2490–9.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Alboni S, Gibellini L, Montanari C, Benatti C, Benatti S, Tascedda F, Brunello N, Cossarizza A, Pariante CM. N-acetyl-cysteine prevents toxic oxidative effects induced by IFN-α in human neurons. Int J Neuropsychopharmacol. 2013;16(8):1849–65.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Horowitz MA, Wertz J, Zhu D, Cattaneo A, Musaelyan K, Nikkheslat N, Thuret S, Pariante CM, Zunszain PA. Antidepressant compounds can be both pro- and anti-inflammatory in human hippocampal cells. Int J Neuropsychopharmacol. 2014;18(3):pyu076.PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Zunszain PA, Anacker C, Cattaneo A, Choudhury S, Musaelyan K, Myint AM, Thuret S, Price J, Pariante CM. Interleukin-1β: a new regulator of the kynurenine pathway affecting human hippocampal neurogenesis. Neuropsychopharmacology. 2012 Mar;37(4):939–49.PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Haroon E, Miller AH. Inflammation effects on brain glutamate in depression: mechanistic considerations and treatment implications. Curr Top Behav Neurosci. 2017;31:173–98.  https://doi.org/10.1007/7854_2016_40.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2019

Authors and Affiliations

  • Angelos Halaris
    • 1
  • Karl Bechter
    • 2
  • Ebrahim Haroon
    • 3
  • Brain E. Leonard
    • 4
  • Andrew Miller
    • 5
  • Carmine Pariante
    • 6
  • Patricia Zunszain
    • 6
  1. 1.Department of Psychiatry and Behavioral NeuroscienceLoyola University Chicago, Stritch School of Medicine, Loyola University Medical CenterMaywoodUSA
  2. 2.Department of Psychiatry and PsychotherapyUlm UniversityGünzburgGermany
  3. 3.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA
  4. 4.Pharmacology DepartmentNational University of IrelandGalwayIreland
  5. 5.Emory Behavioral Immunology Program, Department of Psychiatry and Behavioral SciencesWinship Cancer Institute, Emory University School of MedicineAtlantaUSA
  6. 6.Stress, Psychiatry and Immunology Laboratory (SPI-Lab), Department of Psychological MedicineInstitute of Psychiatry Psychology and Neuroscience, King’s College LondonLondonEngland

Personalised recommendations