Advertisement

Zero-Liquid Discharge Desalination of Hypersaline Shale Gas Wastewater: Challenges and Future Directions

  • Viviani C. OnishiEmail author
  • Juan A. Reyes-Labarta
  • José A. Caballero
Part of the Advances in Science, Technology & Innovation book series (ASTI)

Abstract

Unconventional natural gas extraction from tight shale reservoirs, or “shale gas”, has recently emerged as an attractive energy resource to face the rising worldwide demand.

Keywords

Zero-liquid discharge (ZLD) Shale gas wastewater Thermal and membrane desalination Water reuse and recycling 

Notes

Acknowledgements

Open image in new window

This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme, under grant agreement No. 640979.

References

  1. EIA. Annual energy outlook 2016 with projections to 2040. Washington, DC: U.S. Energy Information Administration, 2016a.Google Scholar
  2. Drioli E, Ali A, Lee YM, Al-Sharif SF, Al-Beirutty M, Macedonio F. Membrane operations for produced water treatment. Desalin Water Treat. 2016;57:14317–35. doi: 10.1080/19443994.2015.1072585.CrossRefGoogle Scholar
  3. EIA. International energy outlook 2016. Washington, DC: U.S. Energy Information Administration, 2016b.Google Scholar
  4. Kaplan R, Mamrosh D, Salih HH, Dastgheib SA. Assessment of desalination technologies for treatment of a highly saline brine from a potential CO2 storage site. Desalination. 2017;404:87–101. doi: 10.1016/j.desal.2016.11.018.CrossRefGoogle Scholar
  5. Lester Y, Ferrer I, Thurman EM, Sitterley KA, Korak JA, Aiken G, Linden KG. Characterization of hydraulic fracturing flowback water in Colorado: Implications for water treatment. Sci Total Environ. 2015;512–513:637–44. doi: 10.1016/j.scitotenv.2015.01.043.CrossRefGoogle Scholar
  6. Onishi VC, Carrero-Parreño A, Reyes-Labarta JA, Fraga ES, Caballero JA. Desalination of shale gas produced water: A rigorous design approach for zero-liquid discharge evaporation systems. J Clean Prod. 2017a;140:1399–414. doi: 10.1016/j.jclepro.2016.10.012.CrossRefGoogle Scholar
  7. Onishi VC, Carrero-Parreño A, Reyes-Labarta JA, Ruiz-Femenia R, Salcedo-Díaz R, Fraga ES, Caballero JA. Shale gas flowback water desalination: Single vs multiple-effect evaporation with vapor recompression cycle and thermal integration. Desalination. 2017b;404:230–48. doi: 10.1016/j.desal.2016.11.003.CrossRefGoogle Scholar
  8. Onishi VC, Ruiz-Femenia R, Salcedo-Díaz R, Carrero-Parreño A, Reyes-Labarta JA, Fraga ES, Caballero JA. Process optimization for zero-liquid discharge desalination of shale gas flowback water under uncertainty. J Clean Prod. 2017c;164:1219–38. doi: 10.1016/j.jclepro.2017.06.243.CrossRefGoogle Scholar
  9. Rahm BG, Riha SJ. Toward strategic management of shale gas development: regional, collective impacts on water resources. Environ Sci Policy. 2012;17:12–23. doi: 10.1016/j.envsci.2011.12.004.CrossRefGoogle Scholar
  10. Shaffer DL, Arias Chavez LH, Ben-Sasson M, Romero-Vargas Castrillón S, Yip NY, Elimelech M. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ Sci Technol. 2013;47:9569–83. doi: 10.1021/es401966e.CrossRefGoogle Scholar
  11. Thiel GP, Lienhard JH. Treating produced water from hydraulic fracturing: composition effects on scale formation and desalination system selection. Desalination. 2014;346:54–69. doi: 10.1016/j.desal.2014.05.001.CrossRefGoogle Scholar
  12. Thomas M, Partridge T, Harthorn BH, Pidgeon N. Deliberating the perceived risks, benefits, and societal implications of shale gas and oil extraction by hydraulic fracturing in the US and UK. Nat. Energy. 2017;2:17054. doi: 10.1038/nenergy.2017.54.CrossRefGoogle Scholar
  13. Tong T, Elimelech M. The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol. 2016;50:6846–55. doi: 10.1021/acs.est.6b01000.CrossRefGoogle Scholar
  14. Zhang T, Gregory K, Hammack RW, Vidic RD. Co-precipitation of Radium with Barium and Strontium sulfate and its impact on the fate of Radium during treatment of produced water from unconventional gas extraction. Environ Sci Technol. 2014;48:4596–603. doi: 10.1021/es405168b.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Viviani C. Onishi
    • 1
    Email author
  • Juan A. Reyes-Labarta
    • 1
  • José A. Caballero
    • 1
  1. 1.Institute of Chemical Process EngineeringUniversity of AlicanteAlicanteSpain

Personalised recommendations