Advertisement

Position-Based Cryptography and Multiparty Communication Complexity

  • Joshua Brody
  • Stefan Dziembowski
  • Sebastian Faust
  • Krzysztof Pietrzak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10677)

Abstract

Position based cryptography (PBC), proposed in the seminal work of Chandran, Goyal, Moriarty, and Ostrovsky (SIAM J. Computing, 2014), aims at constructing cryptographic schemes in which the identity of the user is his geographic position. Chandran et al. construct PBC schemes for secure positioning and position-based key agreement in the bounded-storage model (Maurer, J. Cryptology, 1992). Apart from bounded memory, their security proofs need a strong additional restriction on the power of the adversary: he cannot compute joint functions of his inputs. Removing this assumption is left as an open problem.

We show that an answer to this question would resolve a long standing open problem in multiparty communication complexity: finding a function that is hard to compute with low communication complexity in the simultaneous message model, but easy to compute in the fully adaptive model.

On a more positive side: we also show some implications in the other direction, i.e.: we prove that lower bounds on the communication complexity of certain multiparty problems imply existence of PBC primitives. Using this result we then show two attractive ways to “bypass” our hardness result: the first uses the random oracle model, the second weakens the locality requirement in the bounded-storage model to online computability. The random oracle construction is arguably one of the simplest proposed so far in this area. Our results indicate that constructing improved provably secure protocols for PBC requires a better understanding of multiparty communication complexity. This is yet another example where negative results in one area (in our case: lower bounds in multiparty communication complexity) can be used to construct secure cryptographic schemes.

References

  1. 1.
    Ambainis, A.: Upper bounds on multiparty communication complexity of shifts. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS, vol. 1046, pp. 631–642. Springer, Heidelberg (1996).  https://doi.org/10.1007/3-540-60922-9_51 CrossRefGoogle Scholar
  2. 2.
    Ambainis, A., Lokam, S.V.: Improved upper bounds on the simultaneous messages complexity of the generalized addressing function. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 207–216. Springer, Heidelberg (2000).  https://doi.org/10.1007/10719839_21 CrossRefGoogle Scholar
  3. 3.
    Aumann, Y., Rabin, M.O.: Information theoretically secure communication in the limited storage space model. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 65–79. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48405-1_5 Google Scholar
  4. 4.
    Babai, L., Gál, A., Kimmel, P.G., Lokam, S.V.: Communication complexity of simultaneous messages. SIAM J. Comput. 33(1), 137–166 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Babai, L., Hayes, T.P., Kimmel, P.G.: The cost of the missing bit: communication complexity with help. Combinatorica 21(4), 455–488 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Babai, L., Nisan, N., Szegedy, M.: Multiparty protocols, pseudorandom generators for logspace, and time-space trade-offs. J. Comput. Syst. Sci. 45(2), 204–232 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Ashby, V. (ed.) ACM CCS 1993, Fairfax, Virginia, USA, pp. 62–73. ACM Press, 3–5 November 1993Google Scholar
  8. 8.
    Brands, S., Chaum, D.: Distance-bounding protocols. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 344–359. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-48285-7_30 Google Scholar
  9. 9.
    Brassard, G.: Quantum information: the conundrum of secure positioning. Nature 479, 307–308 (2011)CrossRefGoogle Scholar
  10. 10.
    Buhrman, H., Chandran, N., Fehr, S., Gelles, R., Goyal, V., Ostrovsky, R., Schaffner, C.: Position-based quantum cryptography: impossibility and constructions. SIAM J. Comput. 43(1), 150–178 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Cachin, C., Maurer, U.: Unconditional security against memory-bounded adversaries. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 292–306. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0052243 CrossRefGoogle Scholar
  12. 12.
    Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application to sensor networks. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies, INFOCOM 2005, vol. 3, pp. 1917–1928. IEEE, March 2005Google Scholar
  13. 13.
    Cash, D., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R., Walfish, S.: Intrusion-resilient key exchange in the bounded retrieval model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-70936-7_26 CrossRefGoogle Scholar
  14. 14.
    Chakraborty, K., Leverrier, A.: Practical position-based quantum cryptography. Phys. Rev. A 92, 052304 (2015)CrossRefGoogle Scholar
  15. 15.
    Chandra, A.K., Furst, M.L., Lipton, R.J.: Multi-party protocols. In: Proceedings of the 15th Annual ACM Symposium on the Theory of Computing, pp. 94–99 (1983)Google Scholar
  16. 16.
    Chandran, N., Goyal, V., Moriarty, R., Ostrovsky, R.: Position-based cryptography. SIAM J. Comput. 43(4), 1291–1341 (2014)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Dziembowski, S.: Intrusion-resilience via the bounded-storage model. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 207–224. Springer, Heidelberg (2006).  https://doi.org/10.1007/11681878_11 CrossRefGoogle Scholar
  18. 18.
    Dziembowski, S., Maurer, U.M.: Tight security proofs for the bounded-storage model. In: 34th ACM STOC, pp. 341–350, Montréal, Québec, Canada. ACM Press, 19–21 May 2002Google Scholar
  19. 19.
    Dziembowski, S., Maurer, U.M.: Optimal randomizer efficiency in the bounded-storage model. J. Crypt. 17(1), 5–26 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Dziembowski, S., Pietrzak, K.: Intrusion-resilient secret sharing. In 48th FOCS, Providence, USA, pp. 227–237. IEEE Computer Society Press, 20–23 October 2007Google Scholar
  21. 21.
    Dziembowski, S., Zdanowicz, M.: Position-based cryptography from noisy channels. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 300–317. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-06734-6_19 CrossRefGoogle Scholar
  22. 22.
    Ford, J., Gál, A.: Hadamard tensors and lower bounds on multiparty communication complexity. Comput. Complex. 22(3), 595–622 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Graham, F.C.: Quasi-random hypergraphs revisited. Random Struct. Algorithms 40(1), 39–48 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Lu, C.-J.: Encryption against storage-bounded adversaries from on-line strong extractors. J. Crypt. 17(1), 27–42 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Maurer, U.M.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. Crypt. 5(1), 53–66 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Moran, T., Shaltiel, R., Ta-Shma, A.: Non-interactive timestamping in the bounded-storage model. J. Crypt. 22(2), 189–226 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Nisan, N., Wigderson, A.: Rounds in communication complexity revisited. In: 23rd ACM STOC, New Orleans, Louisiana, USA, pp. 419–429. ACM Press, 6–8 May 1991Google Scholar
  29. 29.
    Nisan, N., Zuckerman, D.: Randomness is linear in space. J. Comput. Syst. Sci. 52(1), 43–52 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Pudlák, P.: Unexpected upper bounds on the complexity of some communication games. In: Abiteboul, S., Shamir, E. (eds.) ICALP 1994. LNCS, vol. 820, pp. 1–10. Springer, Heidelberg (1994).  https://doi.org/10.1007/3-540-58201-0_53 CrossRefGoogle Scholar
  31. 31.
    Pudlk, P., Rödl, V., Sgall, J.: Boolean circuits, tensor ranks, and communication complexity. SIAM J. Comput. 26(3), 605–633 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Raz, R.: The BNS-Chung criterion for multi-party communication complexity. Comput. Complex. 9(2), 113–122 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Sastry, N., Shankar, U., Wagner, D.: Secure verification of location claims. In: Proceedings of the 2nd ACM Workshop on Wireless Security, WiSe 2003, pp. 1–10. ACM, New York (2003)Google Scholar
  34. 34.
    Schaffner, C.: Position-based quantum cryptography. Webpage. http://homepages.cwi.nl/schaffne/positionbasedqcrypto.php. Accessed 17 Feb 2016
  35. 35.
    Unruh, D.: Quantum position verification in the random oracle model. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 1–18. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-44381-1_1 CrossRefGoogle Scholar
  36. 36.
    Vadhan, S.P.: Constructing locally computable extractors and cryptosystems in the bounded-storage model. J. Crypt. 17(1), 43–77 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Vora, A., Nesterenko, M.: Secure location verification using radio broadcast. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 369–383. Springer, Heidelberg (2005).  https://doi.org/10.1007/11516798_27 CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Joshua Brody
    • 1
  • Stefan Dziembowski
    • 2
  • Sebastian Faust
    • 3
    • 4
  • Krzysztof Pietrzak
    • 5
  1. 1.Swarthmore CollegeSwarthmoreUSA
  2. 2.University of WarsawWarsawPoland
  3. 3.Ruhr University BochumBochumGermany
  4. 4.TU DarmstadtDarmstadtGermany
  5. 5.IST AustriaKlosterneuburgAustria

Personalised recommendations