A Unified Approach to Constructing Black-Box UC Protocols in Trusted Setup Models

  • Susumu Kiyoshima
  • Huijia Lin
  • Muthuramakrishnan Venkitasubramaniam
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10677)

Abstract

We present a unified framework for obtaining black-box constructions of Universal Composable (UC) protocol in trusted setup models. Our result is analogous to the unified framework of Lin, Pass, and Venkitasubramaniam [STOC’09, Asiacrypt’12] that, however, only yields non-black-box constructions of UC protocols. Our unified framework shows that to obtain black-box constructions of UC protocols, it suffices to implement a special purpose commitment scheme that is, in particular, concurrently extractable using a given trusted setup. Using our framework, we improve black-box constructions in the common reference string and tamper-proof hardware token models by weakening the underlying computational and setup assumptions.

Notes

Acknowledgments

We sincerely thank the anonymous reviewers for their incredibly helpful and insightful comments and suggestions.

Huijia Lin was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CAREER), a Hellman Fellowship, the Defense Advanced Research Projects Agency (DARPA) and Army Research Office (ARO) under a subcontract No. 2017-002 through Galois. Muthuramakrishnan Venkitasubramaniam is supported by a Google Faculty Research Grant and NSF Awards CNS-1526377 and CNS-1618884. The views expressed are those of the authors and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, the U.S. Government or Google.

References

  1. 1.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS, pp. 136–145 (2001)Google Scholar
  2. 2.
    Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_2 CrossRefGoogle Scholar
  3. 3.
    Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_5 CrossRefGoogle Scholar
  4. 4.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: STOC (2002)Google Scholar
  5. 5.
    Groth, J., Ostrovsky, R.: Cryptography in the multi-string model. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_18 CrossRefGoogle Scholar
  6. 6.
    Barak, B., Canetti, R., Nielsen, J.B., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195 (2004)Google Scholar
  7. 7.
    Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. IACR Cryptology ePrint Archive 2006/432 (2006)Google Scholar
  8. 8.
    Kalai, Y.T., Lindell, Y., Prabhakaran, M.: Concurrent composition of secure protocols in the timing model. J. Cryptol. 20(4), 431–492 (2007)CrossRefMATHMathSciNetGoogle Scholar
  9. 9.
    Katz, J.: Universally composable multi-party computation using tamper-proof hardware. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 115–128. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_7 CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Pass, R., Shelat, A.: Cryptography from sunspots: how to use an imperfect reference string. In: FOCS, pp. 249–259 (2007)Google Scholar
  11. 11.
    Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: STOC, pp. 179–188 (2009)Google Scholar
  12. 12.
    Kilian, J.: Founding cryptography on oblivious transfer. In: 20th ACM STOC, pp. 20–31. ACM Press, May 2008Google Scholar
  13. 13.
    Ishai, Y., Kushilevitz, E., Lindell, Y., Petrank, E.: Black-box constructions for secure computation. In: STOC, pp. 99–108 (2006)Google Scholar
  14. 14.
    Haitner, I.: Semi-honest to malicious oblivious transfer—the black-box way. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 412–426. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_23 CrossRefGoogle Scholar
  15. 15.
    Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32 CrossRefGoogle Scholar
  16. 16.
    Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24 CrossRefGoogle Scholar
  17. 17.
    Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010Google Scholar
  18. 18.
    Goyal, V., Lee, C., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: FOCS, pp. 51–60 (2012)Google Scholar
  19. 19.
    Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_27 CrossRefGoogle Scholar
  20. 20.
    Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_20 CrossRefGoogle Scholar
  21. 21.
    Hazay, C., Venkitasubramaniam, M.: On black-box complexity of universally composable security in the CRS model. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 183–209. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3_8 CrossRefGoogle Scholar
  22. 22.
    Hazay, C., Polychroniadou, A., Venkitasubramaniam, M.: Composable security in the tamper-proof hardware model under minimal complexity. In: Hirt, M., Smith, A. (eds.) TCC 2016. LNCS, vol. 9985, pp. 367–399. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53641-4_15 CrossRefGoogle Scholar
  23. 23.
    Pass, R., Lin, H., Venkitasubramaniam, M.: A unified framework for UC from only OT. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 699–717. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_42 CrossRefGoogle Scholar
  24. 24.
    Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44598-6_27 CrossRefGoogle Scholar
  25. 25.
    Damgård, I., Groth, J.: Non-interactive and reusable non-malleable commitment schemes. In: STOC, pp. 426–437 (2003)Google Scholar
  26. 26.
    Choi, S.G., Katz, J., Wee, H., Zhou, H.-S.: Efficient, adaptively secure, and composable oblivious transfer with a single, global CRS. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 73–88. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_6 CrossRefGoogle Scholar
  27. 27.
    Lindell, Y.: Highly-efficient universally-composable commitments based on the DDH assumption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 446–466. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_25 CrossRefGoogle Scholar
  28. 28.
    Goyal, V., Ishai, Y., Sahai, A., Venkatesan, R., Wadia, A.: Founding cryptography on tamper-proof hardware tokens. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 308–326. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_19 CrossRefGoogle Scholar
  29. 29.
    Moran, T., Segev, G.: David and Goliath commitments: UC computation for asymmetric parties using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 527–544. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_30 CrossRefGoogle Scholar
  30. 30.
    Chandran, N., Goyal, V., Sahai, A.: New constructions for UC secure computation using tamper-proof hardware. In: Smart, N. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 545–562. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78967-3_31 CrossRefGoogle Scholar
  31. 31.
    Döttling, N., Kraschewski, D., Müller-Quade, J.: Unconditional and composable security using a single stateful tamper-proof hardware token. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 164–181. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_11 CrossRefGoogle Scholar
  32. 32.
    Döttling, N., Mie, T., Müller-Quade, J., Nilges, T.: Implementing resettable UC-functionalities with untrusted tamper-proof hardware-tokens. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 642–661. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_36 CrossRefGoogle Scholar
  33. 33.
    Döttling, N., Kraschewski, D., Müller-Quade, J., Nilges, T.: General statistically secure computation with bounded-resettable hardware tokens. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 319–344. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_14 Google Scholar
  34. 34.
    Choi, S.G., Katz, J., Schröder, D., Yerukhimovich, A., Zhou, H.-S.: (Efficient) Universally composable oblivious transfer using a minimal number of stateless tokens. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 638–662. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_27 CrossRefGoogle Scholar
  35. 35.
    Dodis, Y., Fiore, D.: Interactive encryption and message authentication. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 494–513. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_28 Google Scholar
  36. 36.
    De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without interaction (extended abstract). In: 33rd FOCS, pp. 427–436. IEEE Computer Society Press, October 1992Google Scholar
  37. 37.
    Gertner, Y., Kannan, S., Malkin, T., Reingold, O., Viswanathan, M.: The relationship between public key encryption and oblivious transfer. In: 41st FOCS, pp. 325–335. IEEE Computer Society Press, November 2000Google Scholar
  38. 38.
    van Dijk, M., Rührmair, U.: Physical unclonable functions in cryptographic protocols: security proofs and impossibility results. IACR Cryptology ePrint Archive 2012/228 (2012)Google Scholar
  39. 39.
    Canetti, R., Jain, A., Scafuro, A.: Practical UC security with a global random oracle. In: CCS, pp. 597–608 (2014)Google Scholar
  40. 40.
    Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: FOCS, pp. 541–550 (2010)Google Scholar
  41. 41.
    Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: STOC, pp. 242–251 (2004)Google Scholar
  42. 42.
    Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10 CrossRefGoogle Scholar
  43. 43.
    Malkin, T., Moriarty, R., Yakovenko, N.: Generalized environmental security from number theoretic assumptions. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 343–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_18 CrossRefGoogle Scholar
  44. 44.
    Goyal, V., Lin, H., Pandey, O., Pass, R., Sahai, A.: Round-efficient concurrently composable secure computation via a robust extraction lemma. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9014, pp. 260–289. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46494-6_12 Google Scholar
  45. 45.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Black-box construction of a non-malleable encryption scheme from any semantically secure one. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 427–444. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_24 CrossRefGoogle Scholar
  46. 46.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: 22nd ACM STOC, pp. 427–437. ACM Press, May 1990Google Scholar
  47. 47.
    Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_31 CrossRefGoogle Scholar
  48. 48.
    Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4, 151–158 (1991)CrossRefMATHGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2017

Authors and Affiliations

  • Susumu Kiyoshima
    • 1
  • Huijia Lin
    • 2
  • Muthuramakrishnan Venkitasubramaniam
    • 3
  1. 1.NTT Secure Platform LaboratoriesTokyoJapan
  2. 2.University of CaliforniaSanta BarbaraUSA
  3. 3.University of RochesterRochesterUSA

Personalised recommendations