Advertisement

ELMDist: A Vector Space Model with Words and MusicBrainz Entities

  • Luis Espinosa-Anke
  • Sergio Oramas
  • Horacio Saggion
  • Xavier Serra
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10577)

Abstract

Music consumption habits as well as the Music market have changed dramatically due to the increasing popularity of digital audio and streaming services. Today, users are closer than ever to a vast number of songs, albums, artists and bands. However, the challenge remains in how to make sense of all the data available in the Music domain, and how current state of the art in Natural Language Processing and semantic technologies can contribute in Music Information Retrieval areas such as music recommendation, artist similarity or automatic playlist generation. In this paper, we present and evaluate a distributional sense-based embeddings model in the music domain, which can be easily used for these tasks, as well as a device for improving artist or album clustering. The model is trained on a disambiguated corpus linked to the MusicBrainz musical Knowledge Base, and following current knowledge-based approaches to sense-level embeddings, entity-related vectors are provided à la WordNet, concatenating the id of the entity and its mention. The model is evaluated both intrinsically and extrinsically in a supervised entity typing task, and released for the use and scrutiny of the community.

Notes

Acknowledgements

We would like to thank the anonymous reviewers for their very helpful comments and suggestions for improving the quality of the manuscript. We also acknowledge support from the Spanish Minmistry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502) and under the TUNER project (TIN2015-65308-C5-5-R, MINECO/FEDER, UE).

References

  1. 1.
    Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, NIPS 2013, pp. 3111–3119. Curran Associates Inc., USA (2013)Google Scholar
  2. 2.
    Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1532–1543. Association for Computational Linguistics (2014)Google Scholar
  3. 3.
    Pilehvar, M.T., Collier, N.: De-conflated semantic representations. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, pp. 1680–1690. Association for Computational Linguistics (2016)Google Scholar
  4. 4.
    Neelakantan, A., Shankar, J., Passos, A., McCallum, A.: Efficient non-parametric estimation of multiple embeddings per word in vector space. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, pp. 1059–1069. Association for Computational Linguistics (2014)Google Scholar
  5. 5.
    Tian, F., Dai, H., Bian, J., Gao, B., Zhang, R., Chen, E., Liu, T.-Y.: A probabilistic model for learning multi-prototype word embeddings. In: Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, Dublin, Ireland, pp. 151–160. Dublin City University and Association for Computational Linguistics (2014)Google Scholar
  6. 6.
    Liu, Y., Liu, Z., Chua, T.-S., Sun, M.: Topical word embeddings. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI 2015, pp. 2418–2424. AAAI Press (2015)Google Scholar
  7. 7.
    Fellbaum, C.: WordNet, Wiley Online Library (1998)Google Scholar
  8. 8.
    Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Jauhar, S.K., Dyer, C., Hovy, E.: Ontologically grounded multi-sense representation learning for semantic vector space models. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, pp. 683–693. Association for Computational Linguistics (2015)Google Scholar
  10. 10.
    Faruqui, M., Dodge, J., Jauhar, S.K., Dyer, C., Hovy, E., Smith, N.A.: Retrofitting word vectors to semantic lexicons. In: Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Denver, Colorado, pp. 1606–1615. Association for Computational Linguistics (2015)Google Scholar
  11. 11.
    Camacho-Collados, J., Pilehvar, M.T., Navigli, R.: NASARI: a novel approach to a semantically-aware representation of items. In: Proceedings of NAACL, pp. 567–577 (2015)Google Scholar
  12. 12.
    Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 2787–2795. Curran Associates Inc. (2013)Google Scholar
  13. 13.
    Pilehvar, M.T., Navigli, R.: From senses to texts: an all-in-one graph-based approach for measuring semantic similarity. Artif. Intell. 228, 95–128 (2015)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Etzioni, O., Reiter, K., Soderland, S., Sammer, M., Turing Center: Lexical translation with application to image search on the web. Machine Translation Summit XIGoogle Scholar
  15. 15.
    Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, EMNLP 2011, Stroudsburg, PA, USA, pp. 1535–1545. Association for Computational Linguistics (2011)Google Scholar
  16. 16.
    Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, pp. 1306–1313. AAAI Press (2010)Google Scholar
  17. 17.
    Delli Bovi, C., Espinosa Anke, L., Navigli, R.: Knowledge base unification via sense embeddings and disambiguation. In: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, pp. 726–736. Association for Computational Linguistics (2015)Google Scholar
  18. 18.
    Swartz, A.: Musicbrainz: a semantic web service. IEEE Intell. Syst. 17(1), 76–77 (2002)CrossRefGoogle Scholar
  19. 19.
    Oramas, S., Sordo, M., Espinosa-Anke, L., Serra, X.: A Semantic-based Approach for Artist Similarity. In: Proceedings of the International Society for Music Information Retrieval Conference, Málaga, Spain, pp. 100–106 (2015)Google Scholar
  20. 20.
    Sordo, M., Oramas, S., Espinosa-Anke, L.: Extracting relations from unstructured text sources for music recommendation. In: Biemann, C., Handschuh, S., Freitas, A., Meziane, F., Métais, E. (eds.) NLDB 2015. LNCS, vol. 9103, pp. 369–382. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-19581-0_33CrossRefGoogle Scholar
  21. 21.
    Oramas, S., Espinosa-Anke, L., Sordo, M., Saggion, H., Serra, X.: Information extraction for knowledge base construction in the music domain. Data Knowl. Eng. 106, 70–83 (2016)CrossRefGoogle Scholar
  22. 22.
    Gruhl, D., Nagarajan, M., Pieper, J., Robson, C., Sheth, A.: Context and domain knowledge enhanced entity spotting in informal text. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 260–276. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-04930-9_17CrossRefGoogle Scholar
  23. 23.
    Zhang, X., Liu, Z., Qiu, H., Fu, Y.: A hybrid approach for chinese named entity recognition in music domain. In: 2009 Eighth IEEE International Conference on Dependable, Autonomic and Secure Computing, pp. 677–681 (2009)Google Scholar
  24. 24.
    Oramas, S., Espinosa-Anke, L., Sordo, M., Saggion, H., Serra, X.: ELMD: An automatically generated entity linking gold standard dataset in the music domain. In: Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC 2016) (2016)Google Scholar
  25. 25.
    Iacobacci, I., Pilehvar, M.T., Navigli, R.: Sensembed: learning sense embeddings for word and relational similarity. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, vol. 1 Long Papers, Association for Computational Linguistics, Beijing, China, pp. 95–105 (2015)Google Scholar
  26. 26.
    Manicini, M., Camacho-Collados, J., Iacobacci, I., Navigli, R.: Embedding words and senses together via joint knowledge-enhanced training, arXiv prepring arXiv:1612.02703
  27. 27.
    Mikolov, T., Yih, W.-T., Zweig, G.: Linguistic regularities in continuous space word representations. In: HLT-NAACL 2013, pp. 746–751 (2013)Google Scholar
  28. 28.
    Ellis, D.P., Whitman, B., Berenzweig, A., Lawrence, S.: The quest for ground truth in musical artist similarity. In: ISMIR, Paris, France, pp. 170–177 (2002)Google Scholar
  29. 29.
    Cohen, W.W., Fan, W.: Web-collaborative filtering: recommending music by crawling the web. Comput. Netw. 33(1), 685–698 (2000)CrossRefGoogle Scholar
  30. 30.
    Schedl, M., Knees, P., Widmer, G.: A web-based approach to assessing artist similarity using co-occurrences. In: Proceedings of the Fourth International Workshop on Content-Based Multimedia Indexing (CBMI 2005) (2005)Google Scholar
  31. 31.
    Whitman, B., Lawrence, S.: Inferring descriptions and similarity for music from community metadata. In: ICMC 2002 (2002)Google Scholar
  32. 32.
    Shwartz, V., Goldberg, Y., Dagan, I.: Improving hypernymy detection with an integrated path-based and distributional method, pp. 2389–2398 (2016)Google Scholar
  33. 33.
    Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation, arXiv preprint arXiv:1309.4168
  34. 34.
    Fu, R., Guo, J., Qin, B., Che, W., Wang, H., Liu, T.: Learning semantic hierarchies via word embeddings. In: Proceedings of ACL, vol. 1, pp. 1199–1209. Association for Computational Linguistics (2014)Google Scholar
  35. 35.
    Tan, L., Zhang, H., Clarke, C., Smucker, M.: Lexical comparison between wikipedia and twitter corpora by using word embeddings. In: Proceedings of ACL (2), Beijing, China, pp. 657–661 (2015)Google Scholar
  36. 36.
    Rodrıguez-Fernández, S., Espinosa-Anke, L., Carlini, R., Wanner, L.: Semantics-driven recognition of collocations using word embeddings. In: Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (ACL): Short Papers, pp. 499–505 (2016)Google Scholar
  37. 37.
    Bian, J., Liu, Y., Agichtein, E., Zha, H.: Finding the right facts in the crowd: factoid question answering over social media. In: Proceedings of the 17th International Conference on World Wide Web, pp. 467–476. ACM (2008)Google Scholar
  38. 38.
    Espinosa Anke, L., Camacho-Collados, J., Delli Bovi, C., Saggion, H.: Supervised distributional hypernym discovery via domain adaptation. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, pp. 424–435. Association for Computational Linguistics (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Luis Espinosa-Anke
    • 1
  • Sergio Oramas
    • 2
  • Horacio Saggion
    • 1
  • Xavier Serra
    • 2
  1. 1.TALN Natural Language Processing GroupUniversitat Pompeu FabraBarcelonaSpain
  2. 2.Music Technology GroupUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations