SMT-based Synthesis of Safe and Robust PID Controllers for Stochastic Hybrid Systems

  • Fedor Shmarov
  • Nicola Paoletti
  • Ezio Bartocci
  • Shan Lin
  • Scott A. Smolka
  • Paolo ZulianiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10629)


We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID controller (or any other type of controller, for that matter) with safety and performance guarantees for such a general class of systems. In particular, we consider hybrid systems with nonlinear dynamics (Lipschitz-continuous ordinary differential equations) and random parameters, and we synthesize PID controllers such that the resulting closed-loop systems satisfy safety and performance constraints given as probabilistic bounded reachability properties. Our technique leverages SMT solvers over the reals and nonlinear differential equations to provide formal guarantees that the synthesized controllers satisfy such properties. These controllers are also robust by design since they minimize the probability of reaching an unsafe state in the presence of random disturbances. We apply our approach to the problem of insulin regulation for type 1 diabetes, synthesizing controllers with robust responses to large random meal disturbances, thereby enabling them to maintain blood glucose levels within healthy, safe ranges.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alimguzhin, V., Mari, F., Melatti, I., Salvo, I., Tronci, E.: Linearising discrete time hybrid systems. IEEE Transactions on Automatic Control PP(99), 1 (2017)Google Scholar
  2. 2.
    Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993). CrossRefGoogle Scholar
  3. 3.
    Ames, A.D., Holley, J.: Quadratic program based nonlinear embedded control of series elastic actuators. In CDC, pp. 6291–6298. IEEE (2014)Google Scholar
  4. 4.
    Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: System design of stochastic models using robustness of temporal properties. Theor. Comput. Sci. 587, 3–25 (2015)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Bortolussi, L., Milios, D., Sanguinetti, G.: U-Check: model checking and parameter synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015. LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). CrossRefGoogle Scholar
  6. 6.
    Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking of NRA transition systems via incremental reduction to LRA with EUF. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 58–75. Springer, Heidelberg (2017). CrossRefGoogle Scholar
  7. 7.
    David, A., Larsen, K., Legay, A., Mikučionis, M., Poulsen, D.B.: UPPAAL SMC tutorial. International Journal on Software Tools for Technology Transfer 17(4), 397–415 (2015)CrossRefGoogle Scholar
  8. 8.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  9. 9.
    Duong, P.L.T., Lee, M.: Robust PID controller design for processes with stochastic parametric uncertainties. Journal of Process Control 22(9), 1559–1566 (2012)CrossRefGoogle Scholar
  10. 10.
    Eggers, A., Fränzle, M., Herde, C.: SAT modulo ODE: A direct SAT approach to hybrid systems. In: Cha, S.S., Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 171–185. Springer, Heidelberg (2008). CrossRefGoogle Scholar
  11. 11.
    Ellen, C., Gerwinn, S., Fränzle, M.: Statistical model checking for stochastic hybrid systems involving nondeterminism over continuous domains. International Journal on Software Tools for Technology Transfer 17(4), 485–504 (2015)CrossRefGoogle Scholar
  12. 12.
    Farahani, S.S., Raman, V., Murray, R.M.: Robust model predictive control for signal temporal logic synthesis. In: ADHS (2015)Google Scholar
  13. 13.
    Fliess, M., Join, C.: Model-free control. International Journal of Control 86(12), 2228–2252 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability and safety verification for stochastic hybrid systems. In: HSCC, pp. 43–52 (2011)Google Scholar
  15. 15.
    Fränzle, M., Teige, T., Eggers, A.: Engineering constraint solvers for automatic analysis of probabilistic hybrid automata. J. Log. Algebr. Program. 79(7), 436–466 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Gao, S., Avigad, J., Clarke, E.M.: Delta-decidability over the reals. In: LICS, pp. 305–314 (2012)Google Scholar
  17. 17.
    Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 208–214. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  18. 18.
    Guo, L., Wang, H.: PID controller design for output PDFs of stochastic systems using linear matrix inequalities. IEEE T. Sys, Man, and Cyb., Part B (Cyb.) 35(1), 65–71 (2005)Google Scholar
  19. 19.
    He, S., Liu, F.: Robust stabilization of stochastic markovian jumping systems via proportional-integral control. Signal Processing 91(11), 2478–2486 (2011)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hovorka, R.: Closed-loop insulin delivery: from bench to clinical practice. Nature Reviews Endocrinology 7(7), 385–395 (2011)Google Scholar
  21. 21.
    Hovorka, R., et al.: Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiological Measurement 25(4), 905 (2004)Google Scholar
  22. 22.
    Huyett, L.M., et al.: Design and evaluation of a robust PID controller for a fully implantable artificial pancreas. Industrial & Engineering Chemistry Research 54(42), 10311–10321 (2015)CrossRefGoogle Scholar
  23. 23.
    Kanderian Jr., S.S., Steil, G.M.: Apparatus and method for controlling insulin infusion with state variable feedback, July 15 (2014). US Patent 8,777,924Google Scholar
  24. 24.
    Levine, W.S.: The control handbook. CRC Press (1996)Google Scholar
  25. 25.
    Li, Y., Ang, K.H., Chong, G.C., Feng, W., Tan, K.C., Kashiwagi, H.: CAutoCSD-evolutionary search and optimisation enabled computer automated control system design. International Journal of Automation and Computing 1(1), 76–88 (2004)CrossRefGoogle Scholar
  26. 26.
    Mancini, T., Mari, F., Massini, A., Melatti, I., Merli, F., Tronci, E.: System level formal verification via model checking driven simulation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 296–312. Springer, Heidelberg (2013). CrossRefGoogle Scholar
  27. 27.
    Paoletti, N., Liu, K.S., Smolka, S.A., Lin, S.: Data-driven robust control for type 1 diabetes under meal and exercise uncertainties. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 214–232. Springer, Cham (2017). CrossRefGoogle Scholar
  28. 28.
    Parker, R.S., Doyle, F.J., Ward, J.H., Peppas, N.A.: Robust H\(_\infty \) glucose control in diabetes using a physiological model. AIChE Journal 46(12), 2537–2549 (2000)CrossRefGoogle Scholar
  29. 29.
    Sha, L.: Using simplicity to control complexity. IEEE Software 18(4), 20–28 (2001)CrossRefGoogle Scholar
  30. 30.
    Shmarov, F., Paoletti, N., Bartocci, E., Lin, S., Smolka, S.A., Zuliani, P.: Automated synthesis of safe and robust PID controllers for stochastic hybrid systems (2017). arxiv:1707.05229
  31. 31.
    Shmarov, F., Zuliani, P.: ProbReach: Verified probabilistic \(\delta \)-reachability for stochastic hybrid systems. In HSCC, pp. 134–139. ACM (2015)Google Scholar
  32. 32.
    Shmarov, F., Zuliani, P.: Probabilistic hybrid systems verification via SMT and Monte Carlo techniques. In: Bloem, R., Arbel, E. (eds.) HVC 2016. LNCS, vol. 10028, pp. 152–168. Springer, Cham (2016). CrossRefGoogle Scholar
  33. 33.
    Steil, G.M., et al.: The effect of insulin feedback on closed loop glucose control. The Journal of Clinical Endocrinology & Metabolism 96(5), 1402–1408 (2011)CrossRefGoogle Scholar
  34. 34.
    Su, Y., Sun, D., Duan, B.: Design of an enhanced nonlinear PID controller. Mechatronics 15(8), 1005–1024 (2005)CrossRefGoogle Scholar
  35. 35.
    Szalay, P., Eigner, G., Kovács, L.A.: Linear matrix inequality-based robust controller design for type-1 diabetes model. IFAC Proceedings Volumes 47(3), 9247–9252 (2014)CrossRefGoogle Scholar
  36. 36.
    Wilinska, M.E., et al.: Simulation environment to evaluate closed-loop insulin delivery systems in type 1 diabetes. Journal of diabetes science and technology 4(1), 132–144 (2010)CrossRefGoogle Scholar
  37. 37.
    Zhang, L., She, Z., Ratschan, S., Hermanns, H., Hahn, E.M.: Safety verification for probabilistic hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 196–211. Springer, Heidelberg (2010). CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Fedor Shmarov
    • 1
  • Nicola Paoletti
    • 2
  • Ezio Bartocci
    • 3
  • Shan Lin
    • 4
  • Scott A. Smolka
    • 2
  • Paolo Zuliani
    • 1
    Email author
  1. 1.School of ComputingNewcastle UniversityNewcastle upon TyneUK
  2. 2.Department of Computer ScienceStony Brook UniversityStony BrookUSA
  3. 3.Faculty of InformaticsTU WienWienAustria
  4. 4.Department of Electrical and Computer EngineeringStony Brook UniversityStony BrookUSA

Personalised recommendations