Advertisement

An Interaction Concept for Program Verification Systems with Explicit Proof Object

  • Bernhard Beckert
  • Sarah GrebingEmail author
  • Mattias Ulbrich
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10629)

Abstract

Deductive program verification is a difficult task: in general, user guidance is required to control the proof search and construction. Providing the right guiding information is challenging for users and usually requires several reiterations. Supporting the user in this process can considerably reduce the effort of program verification.

In this paper, we present an interaction concept for deductive program verification systems that combines point-and-click interaction with the use of a proof scripting language. Our contribution is twofold: Firstly, we present a concept for a flexible and concise proof scripting language tailored to the needs of program verification. Secondly, we explore the correspondences between program debugging and proof debugging and introduce a concept for analysing failed proof attempts which leverages well-established concepts from software debugging. We illustrate our concepts on examples – including small Java programs with non-trivial specifications – using an early prototype implementation of our interaction concepts that is built on top of the program verification system KeY.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hähnle, R., Huisman, M.: Deductive software verification: From pen-and-paper proofs to industrial tools. LNCS, vol. 10000 (2017)Google Scholar
  2. 2.
    Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M., eds.: Deductive Software Verification - The KeY Book: From Theory to Practice. LNCS, vol. 10001. Springer, Cham (2016)Google Scholar
  3. 3.
    Beckert, B., Grebing, S., Böhl, F.: How to put usability into focus: Using focus groups to evaluate the usability of interactive theorem provers. In: Benzmüller, C., Woltzenlogel Paleo, B. (eds.): UITP 2014. EPTCS , vol. 167, pp. 4–13 (July 2014)Google Scholar
  4. 4.
    Beckert, B., Grebing, S., Böhl, F.: A usability evaluation of interactive theorem provers using focus groups. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 3–19. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15201-1_1 Google Scholar
  5. 5.
    Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: A behavioral interface specification language for Java. SIGSOFT/SEN 31(3), 1–38 (2006)Google Scholar
  6. 6.
    Nipkow, T., Paulson, L.C., Wenzel, M. (eds.) Isabelle/HOL – A Proof Assistant for Higher-Order Logic. LNCS, vol. 2283. Springer (2002)Google Scholar
  7. 7.
    Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development: Coq’Art The Calculus of Inductive Constructions, 1st edn. Texts in Theoretical Computer Science An EATCS Series. Springer-Verlag, Berlin Heidelberg (2004)Google Scholar
  8. 8.
    Wenzel, M.: Isar — A generic interpretative approach to readable formal proof documents. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48256-3_12 CrossRefGoogle Scholar
  9. 9.
    Matichuk, D., Murray, T., Wenzel, M.: Eisbach: A proof method language for isabelle. Journal of Automated Reasoning 56(3), 261–282 (2016)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Ziliani, B., Dreyer, D., Krishnaswami, N.R., Nanevski, A., Vafeiadis, V.: Mtac: A monad for typed tactic programming in coq. SIGPLAN Not. 48(9), 87–100 (2013)CrossRefzbMATHGoogle Scholar
  11. 11.
    Obua, S., Scott, P., Fleuriot, J.: ProofScript: Proof scripting for the masses. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp. 333–348. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-46750-4_19 CrossRefGoogle Scholar
  12. 12.
    Lin, Y., Le Bras, P., Grov, G.: Developing and debugging proof strategies by tinkering. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 573–579. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49674-9_37 CrossRefGoogle Scholar
  13. 13.
    Hentschel, M.: Integrating Symbolic Execution, Debugging and Verification. PhD thesis, Technische Universität Darmstadt (January 2016)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Bernhard Beckert
    • 1
  • Sarah Grebing
    • 1
    Email author
  • Mattias Ulbrich
    • 1
  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations