Shearlet-Based Region Map Guidance for Improving Hyperspectral Image Classification

  • Mariem ZaoualiEmail author
  • Sonia Bouzidi
  • Ezzeddine Zagrouba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10617)


The inclusion of the spatial context in Hyperspectral Images’ classification tasks has widely proved its efficiency. However, when the neighboring pixels do not represent the same land cover, considering all of them might confuse the classifier and decrease the classification accuracy. To overcome this issue, we propose a Shearlet-based Region Map Joint Sparse Representation (RM-JSR), where the objective is to elaborate a map of edge-surrounded partitions, each having a unique label and each referring to a single land cover. To do so, we first decompose the image using Shearlet Transform. Next, we select the finest scale of the obtained decomposition, where we generally find the salient information about the edges. Then, we carry out a K-means algorithm to segregate the coefficients of the kept scale into edge and not-edge clusters. Afterwards, we apply the Inverse Shearlet Transform and create an image by fusing only the reconstructed edge bands. Finally, we apply a threshold in order to get the region map where homogeneous regions are well delimited. Into the objective function of JSR, we inject the proposed Region Map via Hadamard product. This way, we guide the Simultaneous Orthogonal Matching Pursuit (SOMP), an implementation of the JSR paradigm, in an attempt to overcome its fixed window issue. Compared to other methods attempting to solve this problem, our proposed method achieves better overall classification accuracies.


Region map Shearlet SOMP Hyperspectral image Remote sensing 


  1. 1.
    AVIRIS Hyperspectral images.
  2. 2.
    Camps-Valls, G., Gomez-Chova, L., Muñoz-Marí, J., Vila-Francés, J., Calpe-Maravilla, J.: Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 3(1), 93–97 (2006)CrossRefGoogle Scholar
  3. 3.
    Chen, Y., Nasrabadi, N.M., Tran, T.D.: Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 49(10), 3973–3985 (2011)CrossRefGoogle Scholar
  4. 4.
    Dalla Mura, M., Benediktsson, J.A., Waske, B., Bruzzone, L.: Morphological attribute profiles for the analysis of very high resolution images. IEEE Trans. Geosci. Remote Sens. 48(10), 3747–3762 (2010)CrossRefGoogle Scholar
  5. 5.
    Fang, L., Li, S., Kang, X., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification via multiscale adaptive sparse representation. IEEE Trans. Geosci. Remote Sens. 52(12), 7738–7749 (2014)CrossRefGoogle Scholar
  6. 6.
    Kang, X., Li, S., Benediktsson, J.A.: Feature extraction of hyperspectral images with image fusion and recursive filtering. IEEE Trans. Geosci. Remote Sens. 52(6), 3742–3752 (2014)CrossRefGoogle Scholar
  7. 7.
    Kang, X., Li, S., Benediktsson, J.A.: Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 52(5), 2666–2677 (2014)CrossRefGoogle Scholar
  8. 8.
    Li, W., Prasad, S., Fowler, J.E.: Hyperspectral image classification using Gaussian mixture models and Markov random fields. IEEE Geosci. Remote Sens. Lett. 11(1), 153–157 (2014)CrossRefGoogle Scholar
  9. 9.
    Lim, W.-Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Melgani, F., Bruzzone, L.: Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 42(8), 1778–1790 (2004)CrossRefGoogle Scholar
  11. 11.
    Oguslu, E., Zhou, G., Zheng, Z., Iftekharuddin, K., Li, J.: Sparse coding based dense feature representation model for hyperspectral image classification. J. Electron. Imaging 24(6), 063009–063009 (2015)CrossRefGoogle Scholar
  12. 12.
    Roscher, R., Waske, B.: Shapelet-based sparse representation for landcover classification of hyperspectral images. IEEE Trans. Geosci. Remote Sens. 54(3), 1623–1634 (2016)CrossRefGoogle Scholar
  13. 13.
    Tarabalka, Y., Fauvel, M., Chanussot, J., Benediktsson, J.A.: SVM-and MRF-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 7(4), 736–740 (2010)CrossRefGoogle Scholar
  14. 14.
    Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theor. 53(12), 4655–4666 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Yi, S., Labate, D., Easley, G.R., Krim, H.: A shearlet approach to edge analysis and detection. IEEE Trans. Image Process. 18(5), 929–941 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhang, H., Li, J., Huang, Y., Zhang, L.: A nonlocal weighted joint sparse representation classification method for hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(6), 2056–2065 (2014)CrossRefGoogle Scholar
  17. 17.
    Zou, J., Li, W., Huang, X., Qian, D.: Classification of hyperspectral urban data using adaptive simultaneous orthogonal matching pursuit. J. Appl. Remote Sens. 8(1), 085099–085099 (2014)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mariem Zaouali
    • 1
    Email author
  • Sonia Bouzidi
    • 1
    • 2
  • Ezzeddine Zagrouba
    • 1
  1. 1.Research Team on Intelligent Systems in Imaging and Artificial Vision (SIIVA), LR16ES06 Laboratoire de recherche en Informatique, Modélisation et Traitement de l’Information et de la Connaissance (LIMTIC)Université de Tunis El Manar, Institut Supérieur d’InformatiqueArianaTunisia
  2. 2.Université de Carthage, INSATTunisTunisia

Personalised recommendations