Advertisement

Computational Methods in Subspace Designs

  • Michael Braun
  • Michael Kiermaier
  • Alfred Wassermann
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

Subspace designs are the q-analogs of combinatorial designs. Introduced in the 1970s, these structures gained a lot of interest recently because of their application to random network coding. Compared to combinatorial designs, the number of blocks of subspace designs are huge even for the smallest instances. Thus, for a computational approach, sophisticated algorithms are indispensible. This chapter highlights computational methods for the construction of subspace designs, in particular methods based on group theory. Starting from tactical decompositions we present the method of Kramer and Mesner which allows to restrict the search for subspace designs to those with a prescribed group of automorphisms. This approach reduces the construction problem to the problem of solving a Diophantine linear system of equations. With slight modifications it can also be used to construct large sets of subspace designs. After a successful search, it is natural to ask if subspace designs are isomorphic. We give several helpful tools which allow to give answers in surprisingly many situations, sometimes in a purely theoretical way. Finally, we will give an overview of algorithms which are suitable to solve the underlying Diophantine linear system of equations. As a companion to chapter “q-Analogs of Designs: Subspace Designs” this chapter provides an extensive list of groups which were used to construct subspace designs and large sets of subspace designs.

References

  1. 1.
    W.O. Alltop, On the construction of block designs. J. Comb. Theory 1, 501–502 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    C. Berge, D. Ray-Chaudhuri, in Unsolved problems, ed. by C. Berge, D. Ray-Chaudhuri. Hypergraph Seminar: Ohio State University 1972, in Lecture Notes in Mathematics, vol. 411 (Springer, Berlin, 1974), pp. 278–287.  https://doi.org/10.1007/BFb0066199
  3. 3.
    T. Beth, D. Jungnickel, H. Lenz, Design Theory, vol. 1, 2, 2nd edn. (Cambridge University Press, London, 1999)CrossRefzbMATHGoogle Scholar
  4. 4.
    A. Betten, A. Kerber, A. Kohnert, R. Laue, A. Wassermann, The discovery of simple 7-designs with automorphism group P\(\Gamma \)L(2,32), in AAECC 11, Lecture Notes in Computer Science, vol. 948 (Springer, Heidelberg, 1995), pp. 131–145Google Scholar
  5. 5.
    A. Betten, A. Kerber, R. Laue, A. Wassermann, Simple \(8\)-designs with small parameters. Des. Codes Cryptogr. 15(1), 5–27 (1998).  https://doi.org/10.1023/A:1008263724078 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Betten, R. Laue, A. Wassermann, DISCRETA – A tool for constructing \(t\)-designs. Lehrstuhl II für Mathematik, Universität Bayreuth, http://www.mathe2.uni-bayreuth.de/discreta/
  7. 7.
    A. Betten, R. Laue, A. Wassermann, Simple 6 and 7-designs on 19 to 33 points. Congr. Numer. 123, 149–160 (1997)MathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Betten, R. Laue, A. Wassermann, Some simple \(7\)-designs, eds. by. J.W.P. Hirschfeld, S.S. Magliveras, M.J. de Resmini Geometry, Combinatorial Designs and Related Structures, Proceedings of the First Pythagorean Conference, London Mathematical Society Lecture Notes, vol. 245, pp. 15–25 (1997)Google Scholar
  9. 9.
    A. Betten, R. Laue, A. Wassermann, New \(t\)-designs and large sets of \(t\)-designs. Discret. Math. 197/198, 83–109 (1999). Also appeared in the special volume Discrete Mathematics, Editor’s Choice, Edition 1999MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    A. Betten, R. Laue, A. Wassermann, Simple 7-designs with small parameters. J. Comb. Des. 7, 79–94 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    A. Betten, R. Laue, A. Wassermann, Simple \(8\)-\((40,11,1440)\) designs. Discret. Appl. Math. 95, 109–114 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    A. Betten, R. Laue, A. Wassermann, A Steiner 5-design on 36 points. Des. Codes Cryptogr. 17, 181–186 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    M. Braun, Konstruktion diskreter Strukturen unter Verwendung von Operationen linearer Gruppen auf dem linearen Verband, Ph.D. thesis, University of Bayreuth, Germany (2004)Google Scholar
  14. 14.
    M. Braun, Some new designs over finite fields. Bayreuth. Math. Schr. 74, 58–68 (2005)MathSciNetzbMATHGoogle Scholar
  15. 15.
    M. Braun, Designs over the binary field from the complete monomial group. Australas. J. Comb. 67(3), 470–475 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    M. Braun, T. Etzion, P.R.J. Östergård, A. Vardy, A. Wassermann, Existence of \(q\)-analogs of steiner systems. Forum Math. Pi 4(e7), 14 (2016).  https://doi.org/10.1017/fmp.2016.5
  17. 17.
    M. Braun, A. Kerber, R. Laue, Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34(1), 55–70 (2005).  https://doi.org/10.1007/s10623-003-4194-z MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    M. Braun, M. Kiermaier, A. Kohnert, R. Laue, Large sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2017).  https://doi.org/10.1016/j.jcta.2016.11.004
  19. 19.
    M. Braun, M. Kiermaier, A. Nakić, On the automorphism group of a binary \(q\)-analog of the fano plane. Eur. J. Comb. 51, 443–457 (2016).  https://doi.org/10.1016/j.ejc.2015.07.014 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Braun, A. Kohnert, P.R.J. Östergård, A. Wassermann, Large sets of \(t\)-designs over finite fields. J. Comb. Theory Ser. A 124, 195–202 (2014).  https://doi.org/10.1016/j.jcta.2014.01.008 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    M. Braun, P.R.J. Östergård, A. Wassermann, New lower bounds for binary constant-dimension subspace codes. Exp. Math. 1–5 (2016).  https://doi.org/10.1080/10586458.2016.1239145
  22. 22.
    M. Braun, J. Reichelt, \(q\)-analogs of packing designs. J. Comb. Des. 22(7), 306–321 (2014).  https://doi.org/10.1002/jcd.21376 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Braun, A. Wassermann, Disjoint \(q\)-Steiner systems in dimension 13 Universität Bayreuth, Bayreuth, Technical Report (2017)Google Scholar
  24. 24.
    S. Braun, Algorithmen zur computerunterstützten Berechnung von \(q\)-Analoga kombinatorischer Designs. Diplomathesis Universität Bayreuth (2009)Google Scholar
  25. 25.
    P.J. Cameron, Generalisation of Fisher’s inequality to fields with more than one element. eds. by T.P. McDonough, V.C. Mavron. Combinatorics - Proceedings of the British Combinatorial Conference 1973, London Mathematical Society Lecture Note Series, vol. 13 (Cambridge University Press, Cambridge, 1974), pp. 9–13.  https://doi.org/10.1017/CBO9780511662072.003
  26. 26.
    P.J. Cameron, Locally symmetric designs. Geom. Dedicata 3, 65–76 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    P.J. Cameron, W.M. Kantor, 2-transitive and antiflag transitive collineation groups of finite projective spaces. J. Algebra 60(2), 384–422 (1979).  https://doi.org/10.1016/0021-8693(79)90090-5
  28. 28.
    Y.M. Chee, C.J. Colbourn, S.C. Furino, D.L. Kreher, Large sets of disjoint \(t\)-designs. Australas. J. Comb. 2, 111–119 (1990)MathSciNetzbMATHGoogle Scholar
  29. 29.
    C.J. Colbourn, J.H. Dinitz, in Handbook of Combinatorial Designs, 2nd edn, Discrete Mathematics and Its Applications. (Chapman and Hall/CRC , 2006)Google Scholar
  30. 30.
    M. De Boeck, A. Nakić, Necessary conditions for the existence of 3-designs over finite fields with nontrivial automorphism groups. ArXiv e-prints arXiv:1509.09158 (2015)
  31. 31.
    P. Delsarte, Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20(2), 230–243 (1976).  https://doi.org/10.1016/0097-3165(76)90017-0 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    P. Dembowski, Verallgemeinerungen von Transitivitätsklassen endlicher projektiver Ebenen. Math. Z. 69, 59–89 (1958)Google Scholar
  33. 33.
    P. Dembowski, Finite Geometries: Reprint of the 1968 Edition. (Springer, 2012)Google Scholar
  34. 34.
    T. Etzion, A. Vardy, On \(q\)-analogs of Steiner systems and covering designs. Adv. Math. Commun. 5(2), 161–176 (2011).  https://doi.org/10.3934/amc.2011.5.161 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    T. Etzion, A. Vardy, Automorphisms of codes in the Grassmann scheme. ArXiv e-prints arXiv:1210.5724 (2012)
  36. 36.
    A. Fazeli, S. Lovett, A. Vardy, Nontrivial \(t\)-designs over finite fields exist for all \(t\). J. Comb. Theory Ser. A 127, 149–160 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    T. Feulner, The automorphism groups of linear codes and canonical representatives of their semilinear isometry classes. Adv. Math. Commun. 3(4), 363–383 (2009).  https://doi.org/10.3934/amc.2009.3.363 MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    T. Feulner, Canonical forms and automorphisms in the projective space (2013)Google Scholar
  39. 39.
    T. Feulner, Eine kanonische Form zur Darstellung äquivalenter Codes – Computergestützte Berechnung und ihre Anwendung in der Codierungstheorie, Kryptographie und Geometrie. Ph.D. thesis, Universität Bayreuth (2013)Google Scholar
  40. 40.
    P. Frankl, V. Rödl, Near perfect coverings in graphs and hypergraphs. Eur. J. Comb. 6(4), 317–326 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H Freeman and Company, New York, 1979)zbMATHGoogle Scholar
  42. 42.
    P.B Gibbons, P.R.J Östergård, in Computational methods in design theory,eds. by C.J. Colbourn, J.H. Dinitz. Handbook of Combinatorial Designs, 2 edn., chap. VII.6, (Chapman and Hall/CRC, 2007), pp. 755–783Google Scholar
  43. 43.
    I. Gurobi Optimization, Gurobi optimizer reference manual (2016), http://www.gurobi.com
  44. 44.
    E. Haberberger, A. Betten, R. Laue, Isomorphism classification of \(t\)-designs with group theoretical localisation techniques applied to some Steiner quadruple systems on 20 points. Congr. Numer. 75–96 (2000)Google Scholar
  45. 45.
    D. Heinlein, M. Kiermaier, S. Kurz, A. Wassermann, Tables of subspace codes. ArXiv e-prints arXiv:1601.02864 (2016)
  46. 46.
    C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. Geom. Dedic. 2(4), 425–460 (1974).  https://doi.org/10.1007/BF00147570 MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    C. Hering, Transitive linear groups and linear groups which contain irreducible subgroups of prime order. II. J. Algebra 93(1), 151–164 (1985).  https://doi.org/10.1016/0021-8693(85)90179-6
  48. 48.
    H. Hitotumatu, K. Noshita, A technique for implementing backtrack algorithms and its application. Inf. Process. Lett. 8(4), 174–175 (1979).  https://doi.org/10.1016/0020-0190(79)90016-4 CrossRefGoogle Scholar
  49. 49.
    B. Huppert, Endliche Gruppen I, in Grundlehren der mathematischen Wissenschaften, vol. 134 (Springer, Heidelberg, 1967)Google Scholar
  50. 50.
  51. 51.
    M. Kaib, H. Ritter, Block reduction for arbitrary norms Universität Frankfurt, Preprint (1995)Google Scholar
  52. 52.
    R.M. Karp, Reducibility among combinatorial problems, eds. by R.E. Miller, J.W. Thatcher, J.D. Bohlinger. Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, March 20–22, 1972, (Springer, Boston, 1972), pp. 85–103.  https://doi.org/10.1007/978-1-4684-2001-2_9
  53. 53.
    P. Kaski, P.R. Östergård, Classification Algorithms for Codes and Designs (Springer, Berlin, 2006).  https://doi.org/10.1007/3-540-28991-7 Google Scholar
  54. 54.
    P. Kaski, O. Pottonen, libexact user’s guide version 1.0. Technical Report 2008-1, Helsinki University of Technology (2008)Google Scholar
  55. 55.
    M. Kiermaier, S. Kurz, A. Wassermann, The order of the automorphism group of a binary \(q\)-analog of the fano plane is at most two. Designs, Codes and Cryptography (2017). To appear  https://doi.org/10.1007/s10623-017-0360-6
  56. 56.
    M. Kiermaier, M.O. Pavčević, Intersection numbers for subspace designs. J. Comb. Des. 23(11), 463–480 (2015).  https://doi.org/10.1002/jcd.21403 MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Klin, M.H.: Investigations of algebras of invariant relations of certain classes of permutation groups. Ph.D. thesis, Nikolaev (1974). In russianGoogle Scholar
  58. 58.
    D.E. Knuth, Estimating the efficiency of backtrack programs. Math. Comp. 29(129), 121–136 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    D.E Knuth, Dancing links, eds. by A.W. Roscoe, J. Davies, J. Woodcock. Millennial perspectives in computer science, Cornerstones of computing, (Palgrave, 2000), pp. 187–214Google Scholar
  60. 60.
    D.E. Knuth, The art of computer programming, vol. 4A (Addison-Wesley, New Jersey, 2011)zbMATHGoogle Scholar
  61. 61.
    D.E Knuth, Dancing links. Technical Report Fasc 5c, Stanford University (2017)Google Scholar
  62. 62.
    M. Koch, Neue Strategien zur Lösung von Isomorphieproblemen. Ph.D. thesis, University of Bayreuth, Germany (2016)Google Scholar
  63. 63.
    A. Kohnert, S. Kurz, Construction of large constant dimension codes with a prescribed minimum distance, eds. by J. Calmet, W. Geiselmann, J. Müller-Quade. Mathematical Methods in Computer Science: Essays in Memory of Thomas Beth, (Springer, Heidelberg, 2008), pp. 31–42.  https://doi.org/10.1007/978-3-540-89994-5_4
  64. 64.
    R. Kötter, F.R. Kschischang, Coding for errors and erasures in random network coding. IEEE Trans. Inf. Theory 54(8), 3579–3591 (2008).  https://doi.org/10.1109/TIT.2008.926449 MathSciNetCrossRefzbMATHGoogle Scholar
  65. 65.
    E.S. Kramer, D.M. Mesner, \(t\)-designs on hypergraphs. Discret. Math. 15(3), 263–296 (1976).  https://doi.org/10.1016/0012-365X(76)90030-3 MathSciNetCrossRefzbMATHGoogle Scholar
  66. 66.
    D.L. Kreher, S.P. Radziszowski, The existence of simple \(6\)-\((14,7,4)\) designs. J. Comb. Theory Ser. A 43, 237–243 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    D.L. Kreher, S.P. Radziszowski, Constructing 6-(14,7,4) designs. Contemp. Math. 111, 137–151 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    V. Krčadinac, A. Nakić, M.O. Pavčević, The Kramer–Mesner method with tactical decompositions: some new unitals on \(65\) points. J. Comb. Des. 19(4), 290–303 (2011).  https://doi.org/10.1002/jcd.20277 MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    J.C. Lagarias, A.M. Odlyzko, Solving low-density subset sum problems. J. Assoc. Comp. Mach. 32, 229–246 (1985). Appeared already in Proc. 24th IEEE Symp. Found. Comp. Sci. (1983), 1–10MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    R. Laue, Halvings on small point sets. J. Comb. Des. 7, 233–241 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    R. Laue, Constructing objects up to isomorphism, simple \(9\)-designs with small parameters, in Algebraic Combinatorics and Applications, (Springer, New York, 2001), pp. 232–260Google Scholar
  72. 72.
    R. Laue, Solving isomorphism problems for \(t\)-designs, ed by W.D. Wallis. Designs 2002: Further Computational and Constructive Design Theory (Springer US, Boston, MA , 2003), pp. 277–300.  https://doi.org/10.1007/978-1-4613-0245-2_11
  73. 73.
    R. Laue, S. Magliveras, A. Wassermann, New large sets of \(t\)-designs. J. Comb. Des. 9, 40–59 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  74. 74.
    R. Laue, G.R. Omidi, B. Tayfeh-Rezaie, A. Wassermann, New large sets of \(t\)-designs with prescribed groups of automorphisms. J. Comb. Des. 15(3), 210–220 (2007).  https://doi.org/10.1002/jcd.20128 MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    A.K. Lenstra, H.W. Lenstra Jr., L. Lovász, Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  76. 76.
    M.W. Liebeck, The affine permutation groups of rank three. Proc. Lond. Math. Soc. (3) 54(3), 477–516 (1987).  https://doi.org/10.1112/plms/s3-54.3.477
  77. 77.
    S.S Magliveras, The subgroup structure of the Higman-Sims simple group. Ph.D. thesis, University of Birmingham (1970)Google Scholar
  78. 78.
    R. Mathon, Computational methods in design theory, ed. by A.D. Keedwell. Surveys in combinatorics, Proceeding 13th Br. Combinatorial Conference, London Mathematical Society Lecture Notes, vol. 166 (Guildford/UK, 1991), pp. 101–117Google Scholar
  79. 79.
    R. Mathon, Searching for spreads and packings, eds by J.W.P. Hirschfeld, S.S. Magliveras, M.J. de Resmini. Geometry, Combinatorial Designs and Related Structures, Proceedings of the first Pythagorean conference, Mathematical Society Lecture Notes, vol. 245, (London, 1997), pp. 161–176Google Scholar
  80. 80.
    B.D. McKay, A. Piperno, Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014).  https://doi.org/10.1016/j.jsc.2013.09.003
  81. 81.
    M. Miyakawa, A. Munemasa, S. Yoshiara, On a class of small 2-designs over \(\operatorname{GF}(q)\). J. Comb. Des. 3(1), 61–77 (1995).  https://doi.org/10.1002/jcd.3180030108 MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    E.H. Moore, Tactical memoranda i-iii. Am. J. Math. 18(4), 264–303 (1896)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    A. Nakić, M.O. Pavčević, Tactical decompositions of designs over finite fields. Des. Codes Cryptogr. 77(1), 49–60 (2015).  https://doi.org/10.1007/s10623-014-9988-7 MathSciNetCrossRefzbMATHGoogle Scholar
  84. 84.
    P.Q Nguyen, B. Vallée, in The LLL Algorithm: Survey and Applications, 1st edn. Information Security and Cryptography. (Springer, Heidelberg, 2009).  https://doi.org/10.1007/978-3-642-02295-1
  85. 85.
    S. Niskanen, P.R.J Östergård, Cliquer user’s guide, version 1.0. Technical Report T48, Helsinki University of Technology (2003)Google Scholar
  86. 86.
    E.T. Parker, On collineations of symmetric designs. Proc. Am. Math. Soc. 8(2), 350–351 (1957). http://www.jstor.org/stable/2033742
  87. 87.
    W. Pullan, Optimisation of unweighted/weighted maximum independent sets and minimum vertex covers. Discret. Optim. 6(2), 214–219 (2009).  https://doi.org/10.1016/j.disopt.2008.12.001
  88. 88.
    J.F. Sarmiento, Resolutions of PG(5, 2) with point-cyclic automorphism group. J. Comb. Designs 8(1), 2–14 (2000).  https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H
  89. 89.
    B. Schmalz, \(t\)-Designs zu vorgegebener automorphismengruppe. Bayreuth. Math. Schr 41, 1–164 (1992). Ph.D thesis, Universität BayreuthMathSciNetzbMATHGoogle Scholar
  90. 90.
    C.P Schnorr, M. Euchner, Lattice basis reduction: Improved practical algorithms and solving subset sum problems, in Proceedings of Fundamentals of Computation Theory ’91, Lecture Notes in Computer Science, vol. 529, (Springer, Heidelberg, 1991), pp. 68–85Google Scholar
  91. 91.
    H. Suzuki, On the inequalities of \(t\)-designs over a finite field. Euro. J. Comb. 11(6), 601–607 (1990).  https://doi.org/10.1016/S0195-6698(13)80045-5 MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    S. Thomas, Designs over finite fields. Geom. Dedic. 24(2), 237–242 (1987).  https://doi.org/10.1007/BF00150939 MathSciNetCrossRefzbMATHGoogle Scholar
  93. 93.
    R.J. Walker, An enumerative technique for a class of combinatorial problems. Proc. Sympos. Appl. Math. 10, 91–94 (1960). American Mathematical Society, Providence, R.I. (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  94. 94.
    A. Wassermann, Finding simple \(t\)-designs with enumeration techniques. J. Comb. Des. 6(2), 79–90 (1998).  https://doi.org/10.1002/(SICI)1520-6610(1998)6:2<79::AID-JCD1>3.0.CO;2-S
  95. 95.
    A. Wassermann, Covering the Aztec diamond with one-sided tetrasticks. Bull.Inst. Comb. Appl. (ICA) 32, 70–76 (2001)MathSciNetzbMATHGoogle Scholar
  96. 96.
    A. Wassermann, Attacking the market split problem with lattice point enumeration. J. Comb. Optim. 6(1), 5–16 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  97. 97.
    J. Zwanzger, A heuristic algorithm for the construction of good linear codes. IEEE Trans. Inf. Theory 54(5), 2388–2392 (2008).  https://doi.org/10.1109/TIT.2008.920323 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael Braun
    • 1
  • Michael Kiermaier
    • 2
  • Alfred Wassermann
    • 2
  1. 1.Faculty of Computer ScienceDarmstadt University of Applied SciencesDarmstadtGermany
  2. 2.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations