Advertisement

q-Analogs of Designs: Subspace Designs

  • Michael Braun
  • Michael Kiermaier
  • Alfred Wassermann
Chapter
Part of the Signals and Communication Technology book series (SCT)

Abstract

For discrete structures which are based on a finite ambient set and its subsets there exists the notion of a “q-analog”: For this, the ambient set is replaced by a finite vector space and the subsets are replaced by subspaces. Consequently, cardinalities of subsets become dimensions of subspaces. Subspace designs are the q-analogs of combinatorial designs. Introduced in the 1970s, these structures gained a lot of interest recently because of their application to random network coding. In this chapter we give a thorough introduction to the subject starting from the subspace lattice and its automorphisms, the Gaussian binomial coefficient and counting arguments in the subspace lattice. This prepares us to survey the known structural and existence results about subspace designs. Further topics are the derivation of subspace designs with related parameters from known subspace designs, as well as infinite families, intersection numbers, and automorphisms of subspace designs. In addition, q-Steiner systems and so called large sets of subspace designs will be covered. Finally, this survey aims to be a comprehensive source for all presently known subspace designs and large sets of subspace designs with small parameters.

References

  1. 1.
    J. Tits, Sur les analogues algébriques des groupes semi-simples complexes, in Colloque d’algèbre supérieure, tenu à Bruxelles du 19 au 22 décembre 1956, Centre Belge de Recherches Mathématiques (Établissements Ceuterick, Louvain; Librairie Gauthier-Villars, Paris 1957), pp. 261–289Google Scholar
  2. 2.
    T. Beth, D. Jungnickel, H. Lenz, Design Theory, 2nd edn. (Cambridge University Press, Cambridge, 1999)CrossRefzbMATHGoogle Scholar
  3. 3.
    C.J. Colbourn, J.H. Dinitz, Handbook of Combinatorial Designs, 2nd edn., Discrete Mathematics and Its Applications (Chapman & Hall/CRC, Boca Raton, 2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    M. Schwartz, T. Etzion, Codes and anticodes in the Grassman graph. J. Comb. Theory Ser. A 97(1), 27–42 (2002).  https://doi.org/10.1006/jcta.2001.3188 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    G, Birkhoff, Lattice theory, Colloquium Publications, vol 25, 3rd edn. American Mathematical Society (1967)Google Scholar
  6. 6.
    R.P. Stanley, Enumerative Combinatorics, 2nd edn., Cambridge Studies in Advanced Mathematics, vol. 1 (Cambridge University Press, Cambridge, 2012).  https://doi.org/10.1017/CBO9781139058520
  7. 7.
    E. Artin, Geometric Algebra (Wiley classics library, Interscience Publishers Inc., New York, 1988).  https://doi.org/10.1002/9781118164518.ch1
  8. 8.
    R.D. Fray, Congruence properties of ordinary and \(q\)-binomial coefficients. Duke Math. J. 34(3), 467–480 (1967).  https://doi.org/10.1215/S0012-7094-67-03452-7 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    F.H. Jackson, \(q\)-difference equations. Am. J. Math. 32(3), 305–314 (1910).  https://doi.org/10.2307/2370183 CrossRefzbMATHGoogle Scholar
  10. 10.
    M. Ward, A calculus of sequences. Am. J. Math. 58(2), 255–266 (1936).  https://doi.org/10.2307/2371035 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    H. Cohn, Projective geometry over \(\mathbb{F}_1\) and the Gaussian binomial coefficients. Am. Math. Mon. 111(6), 487–495 (2004).  https://doi.org/10.2307/4145067 CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Goldman, G.C. Rota, On the foundations of combinatorial theory IV finite vector spaces and Eulerian generating functions. Stud. Appl. Math. 49(3), 239–258 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Pólya, G. Alexanderson, Gaussian binomial coefficients. Elem. Math. 26, 102–109 (1971), http://eudml.org/doc/1410
  14. 14.
    C. Berge, D. Ray-Chaudhuri, Unsolved problems, in Hypergraph Seminar: Ohio State University 1972, Lecture Notes in Mathematics, ed. by C. Berge, D. Ray-Chaudhuri (Springer, Berlin, 1974), pp. 278–287.  https://doi.org/10.1007/BFb0066199 CrossRefGoogle Scholar
  15. 15.
    P.J. Cameron, Generalisation of Fisher’s inequality to fields with more than one element, in Combinatorics - Proceedings of the British Combinatorial Conference 1973, London Mathematical Society Lecture Note Series, ed. by T.P. McDonough, V.C. Mavron (Cambridge University Press, Cambridge, 1974), pp. 9–13.  https://doi.org/10.1017/CBO9780511662072.003 Google Scholar
  16. 16.
    P. Delsarte, Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 20(2), 230–243 (1976).  https://doi.org/10.1016/0097-3165(76)90017-0 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    S. Thomas, Designs over finite fields. Geom. Dedicata 24(2), 237–242 (1987).  https://doi.org/10.1007/BF00150939 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    H. Suzuki, \(2\)-designs over \(\operatorname{GF}(2^m)\). Graphs Comb. 6(3), 293–296 (1990).  https://doi.org/10.1007/BF01787580 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    H. Suzuki, \(2\)-designs over \(\operatorname{GF}(q)\). Graphs Comb. 8(4), 381–389 (1992).  https://doi.org/10.1007/BF02351594 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    M. Braun, A. Kerber, R. Laue, Systematic construction of \(q\)-analogs of \(t\)-\((v, k,\lambda )\)-designs. Des. Codes Cryptogr. 34(1), 55–70 (2005).  https://doi.org/10.1007/s10623-003-4194-z MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Suzuki, On the inequalities of \(t\)-designs over a finite field. Eur. J. Comb. 11(6), 601–607 (1990).  https://doi.org/10.1016/S0195-6698(13)80045-5 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    B. Segre, Teoria di galois, fibrazioni proiettive e geometrie non desarguesiane. Ann. Mat. Pura Appl. 4 64(1), 1–76 (1964).  https://doi.org/10.1007/BF02410047 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. André, Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe. Math. Z. 60(1), 156–186 (1954).  https://doi.org/10.1007/BF01187370 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    D.K. Ray-Chaudhuri, R.M. Wilson, On \(t\)-designs. Osaka J. Math. 12(3), 737–744 (1975)MathSciNetzbMATHGoogle Scholar
  25. 25.
    M. Kiermaier, R. Laue, Derived and residual subspace designs. Adv. Math. Commun. 9(1), 105–115 (2015).  https://doi.org/10.3934/amc.2015.9.105 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    T.V. Trung, On the construction of \(t\)-designs and the existence of some new infinite families of simple \(5\)-designs. Arch. Math. 47(2), 187–192 (1986).  https://doi.org/10.1007/BF01193690 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D.C. van Leijenhorst, Orbits on the projective line. J. Comb. Theory Ser. A 31(2), 146–154 (1981).  https://doi.org/10.1016/0097-3165(81)90011-X MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    L.M.H.E. Driessen, \(t\)-designs, \(t \ge 3\), Technical Report, Technische Universiteit Eindhoven, 1978Google Scholar
  29. 29.
    N.S. Mendelsohn, Intersection numbers of \(t\)-designs, in Studies in Pure Mathematics, ed. by L. Mirsky (Academic Press, London, 1971), pp. 145–150Google Scholar
  30. 30.
    W. Oberschelp, Lotto-Garantiesysteme und Blockpläne. Math.-Phys. Semesterber. 19, 55–67 (1972)Google Scholar
  31. 31.
    M. Kiermaier, M.O. Pavčević, Intersection numbers for subspace designs. J. Comb. Des. 23(11), 463–480 (2015).  https://doi.org/10.1002/jcd.21403 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    E. Köhler, Allgemeine Schnittzahlen in \(t\)-Designs. Discret. Math. 73(1–2), 133–142 (1988–1989).  https://doi.org/10.1016/0012-365X(88)90141-0
  33. 33.
    S. Thomas, Designs and partial geometries over finite fields. Geom. Dedicata 63, 247–253 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    A. Kerber, Applied Finite Group Actions, Algorithms and Combinatorics, vol 19 (Springer, Berlin, 1999).  https://doi.org/10.1007/978-3-662-11167-3
  35. 35.
    E.S. Kramer, D.M. Mesner, \(t\)-designs on hypergraphs. Discret. Math. 15(3), 263–296 (1976).  https://doi.org/10.1016/0012-365X(76)90030-3 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    B. Huppert, I. Endliche Gruppen, Grundlehren der Mathematischen Wissenschaften (Springer, Berlin, 1967), http://opac.inria.fr/record=b1108495
  37. 37.
    M. Braun, Some new designs over finite fields. Bayreuth. Math. Schr. 74, 58–68 (2005)MathSciNetzbMATHGoogle Scholar
  38. 38.
    M. Miyakawa, A. Munemasa, S. Yoshiara, On a class of small 2-designs over \(\operatorname{GF}(q)\). J. Comb. Des. 3(1), 61–77 (1995).  https://doi.org/10.1002/jcd.3180030108 MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    S, Braun, Construction of \(q\)-analogs of combinatorial designs, Presentation at the conference Algebraic Combinatorics and Applications (ALCOMA10). (Thurnau, Germany, 2010)Google Scholar
  40. 40.
    S, Braun, Algorithmen zur computerunterstützten Berechnung von \(q\)-Analoga kombinatorischer Designs. Diplomathesis Universität Bayreuth (2009)Google Scholar
  41. 41.
    M. Kiermaier, R. Laue, A. Wassermann, A new series of large sets of subspace designs over the binary field. Des. Codes Cryptogr. (2016).  https://doi.org/10.1007/s10623-017-0349-1
  42. 42.
    M. Braun, New 3-designs over the binary field. Int. Electron. J. Geom. 6(2), 79–87 (2013)MathSciNetzbMATHGoogle Scholar
  43. 43.
    M. Braun, New infinite series of 2-designs over the binary and ternary field. Des. Codes Cryptogr. 81(1), 145–152 (2016).  https://doi.org/10.1007/s10623-015-0133-z
  44. 44.
    M. Braun, T. Etzion, P.R.J. Östergård, A. Vardy, A. Wassermann, Existence of \(q\)-analogs of Steiner systems. Forum Math. 4(7), (2016).  https://doi.org/10.1017/fmp.2016.5
  45. 45.
    M. Braun, Designs over the binary field from the complete monomial group. Australas. J. Comb. 67(3), 470–475 (2017)MathSciNetzbMATHGoogle Scholar
  46. 46.
    M. Braun, M. Kiermaier, A. Kohnert, R. Laue, Large sets of subspace designs. J. Comb. Theory Ser. A 147, 155–185 (2017).  https://doi.org/10.1016/j.jcta.2016.11.004
  47. 47.
    M. Braun, A. Wassermann, Disjoint \(q\)-Steiner systems in dimension 13, Universität Bayreuth, Bayreuth, Technical Report, 2017Google Scholar
  48. 48.
    H. Suzuki, Five days introduction to the theory of designs (1989), http://subsite.icu.ac.jp/people/hsuzuki/lecturenote/designtheory.pdf
  49. 49.
    P.J. Cameron, Locally symmetric designs. Geom. Dedicata 3, 65–76 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    D. Ray-Chaudhuri, N. Singhi, \(q\)-analogues of \(t\)-designs and their existence. Linear Algebra Appl. 114–115, 57–68 (1989).  https://doi.org/10.1016/0024-3795(89)90451-5 MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    R.M. Wilson, The necessary conditions for \(t\)-designs are sufficient for something. Util. Math 4, 207–215 (1973)MathSciNetzbMATHGoogle Scholar
  52. 52.
    P. Keevash, The existence of designs. arXiv identifier 1401.3665 (2014)Google Scholar
  53. 53.
    V. Guruswami, S. Kopparty, Explicit subspace designs, in 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pp. 608–617 (2013).  https://doi.org/10.1109/FOCS.2013.71
  54. 54.
    V. Guruswami, C. Xing, List decoding Reed-Solomon, algebraic-geometric, and Gabidulin subcodes up to the singleton bound, in Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13 (ACM, New York, NY, USA, 2013), pp. 843–852.  https://doi.org/10.1145/2488608.2488715
  55. 55.
    L. Teirlinck, Non-trivial \(t\)-designs without repeated blocks exist for all \(t\). Discret. Math. 65(3), 301–311 (1987).  https://doi.org/10.1016/0012-365X(87)90061-6 MathSciNetCrossRefzbMATHGoogle Scholar
  56. 56.
    A. Fazeli, S. Lovett, A. Vardy, Nontrivial \(t\)-designs over finite fields exist for all \(t\). J. Comb. Theory Ser. A 127, 149–160 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    P. Frankl, V. Rödl, Near perfect coverings in graphs and hypergraphs. Eur. J. Comb. 6(4), 317–326 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    T. Abe, S. Yoshiara, On Suzuki’s construction of \(2\)-designs over GF\((q)\). Sci. Rep. Hirosaki Univ. 10, 119–122 (1993)MathSciNetzbMATHGoogle Scholar
  59. 59.
    T. Itoh, A new family of \(2\)-designs over \(\operatorname{GF}(q)\) admitting \(\operatorname{SL}_m(q^l)\). Geom. Dedicata 69(3), 261–286 (1998).  https://doi.org/10.1023/A:1005057610394 MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    M. Braun, A. Kohnert, P.R.J. Östergård, A. Wassermann, Large sets of \(t\)-designs over finite fields. J. Comb. Theory Ser. A 124, 195–202 (2014).  https://doi.org/10.1016/j.jcta.2014.01.008 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    K. Metsch, Bose–Burton Type Theorems for Finite Projective, Affine and Polar Spaces, in Surveys in Combinatorics, Lecture Notes Series, ed. by Lamb, Preece (London Mathematical Society, 1999)Google Scholar
  62. 62.
    D.E. Knuth, Dancing links, in Millennial Perspectives in Computer Science, Cornerstones of Computing, ed. by A.W. Roscoe, J. Davies, J. Woodcock (Palgrave, 2000), pp. 187–214Google Scholar
  63. 63.
    M. Braun, M. Kiermaier, A. Nakić, On the automorphism group of a binary \(q\)-analog of the Fano plane. Eur. J. Comb. 51, 443–457 (2016).  https://doi.org/10.1016/j.ejc.2015.07.014 MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    M. Kiermaier, S. Kurz, A. Wassermann, The order of the automorphism group of a binary \(q\)-analog of the fano plane is at most two. Des. Codes Cryptogr. (2017).  https://doi.org/10.1007/s10623-017-0360-6
  65. 65.
    J.J. Sylvester, Note on the historical origin of the unsymmetrical sixvalued function of six letters. Philos. Mag. Ser. 4 21(141), 369–377 (1861).  https://doi.org/10.1080/14786446108643072 Google Scholar
  66. 66.
    R.H. Denniston, Sylvester’s problem of the 15 schoolgirls. Discret. Math. 9(3), 229–233 (1974).  https://doi.org/10.1016/0012-365X(74)90004-1
  67. 67.
    Z. Baranyai, On the factorization of the complete uniform hypergraph, in Infinite and finite Sets, Colloquia Mathematica Societatis János Bolyai, vol. 1, ed. by A. Hajnal, R. Rado, V.T. Sós (Bolyai János Matematikai Társulat and North-Holland, Budapest and Amsterdam, 1975), pp. 91–107Google Scholar
  68. 68.
    A. Beutelspacher, On parallelisms in finite projective spaces. Geometriae Dedicata 3(1), 35–40 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  69. 69.
    R.H.F. Denniston, Some packings of projective spaces. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 52(8), 36–40 (1972)MathSciNetzbMATHGoogle Scholar
  70. 70.
    R.D. Baker, Partitioning the planes of \({AG}_{2m}(2)\) into 2-designs. Discret. Math. 15(3), 205–211 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  71. 71.
    F. Wettl, On parallelisms of odd dimensional finite projective spaces. Period. Polytech. Transp. Eng. 19(1–2), 111 (1991)MathSciNetGoogle Scholar
  72. 72.
    T. Etzion, A. Vardy, Automorphisms of codes in the Grassmann scheme. arXiv identifier 1210.5724 (2012)Google Scholar
  73. 73.
    T. Hishida, M. Jimbo, Cyclic resolutions of the bib design in \({PG}(5,2)\). Australas. J. Comb. 22, 73–79 (2000)MathSciNetzbMATHGoogle Scholar
  74. 74.
    J.F. Sarmiento, Resolutions of PG(5, 2) with point-cyclic automorphism group. J. Comb. Des. 8(1), 2–14 (2000). https://doi.org/10.1002/(SICI)1520-6610(2000)8:1<2::AID-JCD2>3.0.CO;2-H
  75. 75.
    M.R. Hurley, B.K. Khadka, S.S. Magliveras, Some new large sets of geometric designs of type \([3][2,3,2^8]\). J. Algebra Comb. Discret. Struct. Appl. 3(3), 165–176 (2016).  https://doi.org/10.13069/jacodesmath.40139 MathSciNetGoogle Scholar
  76. 76.
    L. Teirlinck, Locally trivial \(t\)-designs and \(t\)-designs without repeated blocks. Discret. Math. 77(1–3), 345–356 (1989).  https://doi.org/10.1016/0012-365X(89)90372-5 MathSciNetCrossRefzbMATHGoogle Scholar
  77. 77.
    G. B. Khosrovshahi, S. Ajoodani-Namini, Combining \(t\)-designs. JCTSA 58(1), 26–34 (1991).  https://doi.org/10.1016/0097-3165(91)90071-N
  78. 78.
    S. Ajoodani-Namini, Extending large sets of \(t\)-designs. J. Comb. Theory Ser. A 76(1), 139–144 (1996).  https://doi.org/10.1006/jcta.1996.0093 MathSciNetCrossRefzbMATHGoogle Scholar
  79. 79.
    S. Ajoodani-Namini, G. Khosrovashahi, More on halving the complete designs. Discret. Math. 135(1–3), 29–37 (1994).  https://doi.org/10.1016/0012-365X(93)E0096-M MathSciNetCrossRefzbMATHGoogle Scholar
  80. 80.
    G.B. Khosrovshahi, B. Tayfeh-Rezaie, Trades and \(t\)-designs, Surveys in Combinatorics 2009, London Mathematical Society Lecture Note Series (Cambridge University Press, Cambridge, 2009), pp. 91–111.  https://doi.org/10.1017/CBO9781107325975.005 CrossRefGoogle Scholar
  81. 81.
    T. Etzion, Problems on \(q\)-analogs in coding theory. arXiv identifier 1305.6126 (2013)Google Scholar
  82. 82.
    T. Etzion, L. Storme, Galois geometries and coding theory. Des. Codes Cryptogr. 78(1), 311–350 (2016).  https://doi.org/10.1007/s10623-015-0156-5 MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    A. Hartman, Halving the complete design. Ann. Discret. Math. 34, 207–224 (1987).  https://doi.org/10.1016/S0304-0208(08)72888-3 MathSciNetzbMATHGoogle Scholar
  84. 84.
    S. Ajoodani-Namini, All block designs with \(b = \genfrac(){0.0pt}{}{v}{k}/2\) exist. Discret. Math. 179(1–3), 27–35 (1998).  https://doi.org/10.1016/S0012-365X(97)00024-1 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Michael Braun
    • 1
  • Michael Kiermaier
    • 2
  • Alfred Wassermann
    • 2
  1. 1.Faculty of Computer ScienceDarmstadt University of Applied SciencesDarmstadtGermany
  2. 2.Department of MathematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations