Towards Suicide Prevention: Early Detection of Depression on Social Media

  • Victor Leiva
  • Ana FreireEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10673)


The statistics presented by the World Health Organization inform that 90% of the suicides can be attributed to mental illnesses in high-income countries. Besides, previous studies concluded that people with mental illnesses tend to reveal their mental condition on social media, as a way of relief. Thus, the main objective of this work is the analysis of the messages that a user posts online, sequentially through a time period, and detect as soon as possible if this user is at risk of depression. This paper is a preliminary attempt to minimize measures that penalize the delay in detecting positive cases. Our experiments underline the importance of an exhaustive sentiment analysis and a combination of learning algorithms to detect early symptoms of depression.


Early detection Depression Social media Machine learning 



This work was supported by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502).


  1. 1.
    Brubaker, J.R., Kivran-Swaine, F., Taber, L., Hayes, G.R.: Grief-stricken in a crowd: the language of bereavement and distress in social media. In: Proceedings of ICWSM (2012)Google Scholar
  2. 2.
    Sowles, S., Connolly, S., Rosas, C., Bharadwaj, M., Bierut, L.J., Cavazos-Rehg, P.A., Krauss, M.J.: A content analysis of depression-related tweets. Comput. Hum. Behav. 1(54), 351–357 (2016)Google Scholar
  3. 3.
    Cole, D.A., Zelkowitz, R.L., Nick, E., Martin, N.C., Roeder, K.M., Sinclair-McBride, K., Spinelli, T.: Longitudinal and incremental relation of cybervictimization to negative self-cognitions and depressive symptoms in young adolescents. J. Abnorm. Child Psychol. 44(7), 1321–1332 (2016)CrossRefGoogle Scholar
  4. 4.
    De Choudhury, M., Counts, S., Horvitz, E.: Social media as a measurement tool of depression in populations. In: Proceedings of the 5th Annual ACM Web Science Conference, pp. 47–56. ACM (2013)Google Scholar
  5. 5.
    Hutto, C., Gilbert, E.: Vader: a parsimonious rule-based model for sentiment analysis of social media text. In: Web and Social Media (2014)Google Scholar
  6. 6.
    Wills, G., Syarif, I., Prugel-Bennett, A.: SVM parameter optimization using grid search and genetic algorithm to improve classification performance. TELKOMNIKA 14(4), 1502–1509 (2016)CrossRefGoogle Scholar
  7. 7.
    Losada, D.E., Crestani, F.: A test collection for research on depression and language use. In: Fuhr, N., Quaresma, P., Gonçalves, T., Larsen, B., Balog, K., Macdonald, C., Cappellato, L., Ferro, N. (eds.) CLEF 2016. LNCS, vol. 9822, pp. 28–39. Springer, Cham (2016). doi: 10.1007/978-3-319-44564-9_3 CrossRefGoogle Scholar
  8. 8.
    Nadeem, M.: Identifying depression on Twitter. arXiv preprint:1607.07384 (2016)Google Scholar
  9. 9.
    Park, M., Cha, C., Cha, M.: Depressive moods of users portrayed in Twitter. In: Proceedings of the ACM SIGKDD Workshop on Healthcare Informatics, pp. 1–8 (2012)Google Scholar
  10. 10.
    Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Wang, X., Zhang, C., Ji, Y., Sun, L., Wu, L., Bao, Z.: A depression detection model based on sentiment analysis in micro-blog social network. In: Li, J., Cao, L., Wang, C., Tan, K.C., Liu, B., Pei, J., Tseng, V.S. (eds.) PAKDD 2013. LNCS, vol. 7867, pp. 201–213. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40319-4_18 CrossRefGoogle Scholar
  12. 12.
    WHO. Accessed 06 May 2017
  13. 13.
    WHO. Preventing Suicide: A Global Imperative (2015)Google Scholar
  14. 14.
    Srinivasan, P., Yang, C.: Life satisfaction and the pursuit of happiness on Twitter. PLoS ONE 11(3), e0150881 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Communications and Information TechnologiesUniversitat Pompeu FabraBarcelonaSpain

Personalised recommendations