Advertisement

Cascades on Online Social Networks: A Chronological Account

  • Nora Alrajebah
  • Thanassis Tiropanis
  • Leslie Carr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10673)

Abstract

Online social network platforms have served as a substantial venue for research, offering a plethora of data that can be analysed to cultivate insights about the way humans behave and interact within the virtual borders of these platforms. In addition to generating content, these platforms provide the means to spread content via built-in functionalities. The traces of the spreading content and the individuals’ incentives behind such behaviour are all parts of a phenomenon known as information diffusion. This phenomenon has been extensively studied in the literature from different perspectives, one of which is cascades: the traces of the spreading content. These traces form structures that link users to each other, where these links represent the direction of information flow between the users. In fact, cascades have served as an artefact to study the information diffusion processes on online social networks. In this paper, we present a survey of cascades; we consider their definitions and significance. We then look into their topology and what information is used to construct them and how the type of content and the platform can consequently affect cascades’ networks. Additionally, we present a survey of the structural and temporal features of cascades; we categorise them, define them and explain their significance, as these features serve as quantifiers to understand and overcome the complex nature of cascades.

Keywords

Social network analysis Information diffusion Cascades 

References

  1. 1.
  2. 2.
    Adamic, L., Lento, T., Adar, E., Ng, P.: Information evolution in social networks. In: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining (WDSM 2016), pp. 473–482. ACM, New York (2016)Google Scholar
  3. 3.
    Adamic, L.A., Lento, T.M., Fiore, A.T.: How you met me. In: Proceedings of the 6th International AAAI Conference on Weblogs and Social Media (ICWSM) (2012)Google Scholar
  4. 4.
    Adar, E., Adamic, L.: Tracking information epidemics in blogspace. In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2005), pp. 207–214. IEEE Computer Society (2005)Google Scholar
  5. 5.
    Alrajebah, N.: Investigating the structural characteristics of cascades on Tumblr. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (ASONAM 2015), pp. 910–917. ACM (2015)Google Scholar
  6. 6.
    Alrajebah, N., Carr, L., Luczak-roesch, M., Tiropanis, T.: Deconstructing diffusion on Tumblr: structural and temporal aspects. In: Proceedings of the 9th ACM Conference on Web Science. ACM, in pressGoogle Scholar
  7. 7.
    Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J., Tiwari, M.: Global diffusion via cascading invitations: structure, growth, and homophily. In: Proceedings of the 24th International Conference on World Wide Web (WWW 2015), pp. 66–76. ACM (2015)Google Scholar
  8. 8.
    Antoniades, D., Dovrolis, C.: Co-evolutionary dynamics in social networks: a case study of Twitter. Comput. Soc. Netw. 2, 14 (2015)CrossRefGoogle Scholar
  9. 9.
    Bakshy, E., Hofman, J., Mason, W.A., Watts, D.J.: Everyone’s an influencer: quantifying influence on Twitter. In: Proceedings of the Fourth ACM International Conference on Web Search and Data Mining (WSDM 2011), pp. 65–74. ACM (2011)Google Scholar
  10. 10.
    Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), pp. 519–528. ACM, Lyon (2012)Google Scholar
  11. 11.
    Berners-Lee, T.: Weaving the Web: The Original Design and Ultimate Destiny of the World Wide Web by its Inventor. HarperInformation (2000)Google Scholar
  12. 12.
    Bhattacharya, D., Ram, S.: Sharing news articles using 140 characters: a diffusion analysis on Twitter. In: Proceedings of the 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, (ASONAM 2012), pp. 966–971. IEEE Computer Society (2012)Google Scholar
  13. 13.
    Bikhchandani, S., Hirshleifer, D., Welch, I.: A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 5, 992–1026 (1992)CrossRefGoogle Scholar
  14. 14.
    Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characterization of user behavior in Twitter and analysis of the retweet graph. ACM Trans. Internet Technol. 15(1), 24 (2015)CrossRefGoogle Scholar
  15. 15.
    Boyd, D., Golder, S., Lotan, G.: Tweet, Tweet, Retweet: conversational aspects of Retweeting on Twitter. In: 2010 43rd Hawaii International Conference on System Sciences (HICSS), pp. 1–10. IEEE Computer Society (2010)Google Scholar
  16. 16.
    Çelen, B., Kariv, S.: Distinguishing informational cascades from herd behavior in the laboratory. Am. Econ. Rev. 94(3), 484–498 (2004)CrossRefGoogle Scholar
  17. 17.
    Chang, Y., Tang, L., Inagaki, Y., Liu, Y.: What is Tumblr: a statistical overview and comparison. SIGKDD Explor. 16(1), 21–29 (2014)CrossRefGoogle Scholar
  18. 18.
    Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J., Leskovec, J.: Can cascades be predicted? In: Proceedings of the 23rd International Conference on World Wide Web (WWW 2014), pp. 925–935. ACM, Seoul (2014)Google Scholar
  19. 19.
    Cheng, J., Adamic, L.A., Kleinberg, J., Leskovec, J.: Do cascades recur? In: Proceedings of the 25th International Conference on World Wide Web (WWW 2016), pp. 671–681. ACM (2016)Google Scholar
  20. 20.
    Cheong, M., Lee, V.: Twittering for earth: a study on the impact of microblogging activism on earth hour 2009 in Australia. In: Nguyen, N.T., Le, M.T., Świątek, J. (eds.) ACIIDS 2010. LNCS, vol. 5991, pp. 114–123. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12101-2_13 CrossRefGoogle Scholar
  21. 21.
    Dow, P., Adamic, L., Friggeri, A.: The anatomy of large Facebook cascades. In: Proceedings of the Seventh International Conference on Weblogs and Social Media, (ICWSM), pp. 145–154. AAAI, Cambridge (2013)Google Scholar
  22. 22.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  23. 23.
    Farajtabar, M., Gomez-Rodriguez, M., Wang, Y., Li, S., Zha, H., Song, L.: Co-evolutionary dynamics of information diffusion and network structure. In: Proceedings of the 24th International Conference on World Wide Web (WWW 2015), pp. 619–620. ACM (2015)Google Scholar
  24. 24.
    Galuba, W., Aberer, K.: Outtweeting the Twitterers - predicting information cascades in Microblogs. In: Proceedings of the 3rd Wonference on Online Social Networks (WOSN 2010), pp. 1–9. USENIX Association, Boston (2010)Google Scholar
  25. 25.
    Goel, S., Watts, D., Goldstein, D.: The structure of online diffusion networks. In: Proceedings of the 13th ACM Conference on Electronic Commerce (EC 2012), vol. 1, pp. 623–638. ACM (2012)Google Scholar
  26. 26.
    Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12(3), 211–223 (2001)CrossRefGoogle Scholar
  27. 27.
    Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - (KDD 2010), pp. 1019–1028. ACM (2010)Google Scholar
  28. 28.
    Gomez Rodriguez, M., Leskovec, J., Schölkopf, B.: Structure and dynamics of information pathways in online media. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining (WSDM 2013), p. 23. ACM (2013)Google Scholar
  29. 29.
    Grabner-Kräuter, S.: Web 2.0 social networks: the role of trust. J. Bus. Ethics 90(Suppl. 4), 505–522 (2009)CrossRefGoogle Scholar
  30. 30.
    Granovetter, M.S.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  31. 31.
    Gruhl, D., Guha, R., Liben-Nowell, D., Tomkins, A.: Information diffusion through Blogspace. In: Proceedings of the 13th International Conference on World Wide Web (WWW 2004), pp. 491–501. ACM (2004)Google Scholar
  32. 32.
    Guille, A., Hacid, H., Favre, C., Zighed, D.: Information diffusion in online social networks: a survey. SIGMOD Rec. 42(2), 17–28 (2013)CrossRefGoogle Scholar
  33. 33.
    Heidemann, J., Klier, M., Probst, F.: Online social networks: a survey of a global phenomenon. Comput. Netw. 56(18), 3866–3878 (2012)CrossRefGoogle Scholar
  34. 34.
    Herring, S.C.S.: Computer-Mediated Communication: Linguistic, Social, and Cross-Cultural Perspectives, vol. 39. John Benjamins Publishing, Amsterdam (1996)Google Scholar
  35. 35.
    Hughes, A.L., Palen, L.: Twitter adoption and use in mass convergence and emergency events. Int. J. Emergency Manag. 6, 248 (2009)CrossRefGoogle Scholar
  36. 36.
    Kaplan, A.M., Haenlein, M.: Users of the world, unite! The challenges and opportunities of social media. Bus. Horiz. 53(1), 59–68 (2010)CrossRefGoogle Scholar
  37. 37.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM International Conference on Knowledge Discovery and Data Mining (KDD 2003), pp. 137–146. ACM (2003)Google Scholar
  38. 38.
    Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Proceedings of the 19th International Conference on World Wide Web (WWW 2010), pp. 591–600. ACM (2010)Google Scholar
  39. 39.
    Lai, L.S.L., Turban, E.: Groups formation and operations in the web 2.0 environment and social networks. Group Decis. Negot. 17(5), 387–402 (2008)CrossRefGoogle Scholar
  40. 40.
    Lerman, K., Ghosh, R.: Information contagion: an empirical study of the spread of news on Digg and Twitter social networks. In: Fourth International AAAI Conference on Weblogs and Social Media, pp. 90–97. AAAI (2010)Google Scholar
  41. 41.
    Leskovec, J., McGlohon, M., Faloutsos, C., Glance, N., Hurst, M.: Patterns of cascading behavior in large blog graphs. In: Proceedings of the 2007 SIAM International Conference on Data Mining, pp. 551–556. SIAM (2007)Google Scholar
  42. 42.
    Leskovec, J., Singh, A., Kleinberg, J.: Patterns of influence in a recommendation network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS, vol. 3918, pp. 380–389. Springer, Heidelberg (2006). doi: 10.1007/11731139_44 CrossRefGoogle Scholar
  43. 43.
    Liben-Nowell, D., Kleinberg, J.: Tracing information flow on a global scale using Internet chain-letter data. Proc. Natl. Acad. Sci. 105(12), 4633–4638 (2008)CrossRefGoogle Scholar
  44. 44.
    Ma, Z., Sun, A., Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter. J. Am. Soc. Inform. Sci. Technol. 64(7), 1399–1410 (2013)CrossRefGoogle Scholar
  45. 45.
    McBride, K.: Journalism and public shaming: Some guidelines (2015). http://www.poynter.org/2015/journalism-and-public-shaming-some-guidelines/326097/
  46. 46.
    Myers, S., Leskovec, J.: The Bursty dynamics of the Twitter information network. In: Proceedings of the 23rd International Conference on World Wide Web (WWW 2014), pp. 913–923. ACM (2014)Google Scholar
  47. 47.
    Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: Proceeding of IEEE 12th International Conference on Data Mining, pp. 539–548. IEEE (2012)Google Scholar
  48. 48.
    Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford (2010)CrossRefzbMATHGoogle Scholar
  49. 49.
    O’Reilly, T.: What is web 2.0 (2005). http://www.oreilly.com/pub/a/web2/archive/what-is-web-20.html
  50. 50.
    Petrovic, S., Osborne, M., Lavrenko, V.: RT to win! Predicting message propagation in Twitter. In: Proceedings of 5th International Conference on Weblogs and Social Media (ICWSM), pp. 586–589. AAAI (2011)Google Scholar
  51. 51.
    Scott, J.: Network analysis. In: Darity, W.A. (ed.) International Encyclopaedia of the Social Sciences. Macmillan, New York (2008)Google Scholar
  52. 52.
    Taxidou, I., Fischer, P.M.: Online analysis of information diffusion in Twitter. In: Proceedings of the Companion Publication of the 23rd International Conference on World Wide Web Companion (WWW Companion 2014), pp. 1313–1318. ACM (2014)Google Scholar
  53. 53.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2, 1–9 (2012)CrossRefGoogle Scholar
  54. 54.
    Xu, J., Compton, R., Lu, T.C., Allen, D.: Rolling through Tumblr : characterizing behavioral patterns of the Microblogging platform. In: Proceedings of the 2014 ACM Conference on Web Science (WebSci 2014), pp. 13–22. ACM (2014)Google Scholar
  55. 55.
    Yang, J., Counts, S.: Predicting the speed, scale, and range of information diffusion in Twitter. In: Proceedings of 4th International Conference on Weblogs and Social Media (ICWSM 2010), pp. 355–358. AAAI (2010)Google Scholar
  56. 56.
    Yang, L., Sun, T., Zhang, M., Mei, Q.: We know what@ you# tag: does the dual role affect hashtag adoption? In: Proceedings of the 21st International Conference on World Wide Web (WWW 2012), pp. 261–270. ACM (2012)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Nora Alrajebah
    • 1
  • Thanassis Tiropanis
    • 1
  • Leslie Carr
    • 1
  1. 1.Web and Internet ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations