Evaluation of Linked, Open Data Sources for Mining Adverse Drug Reaction Signals

  • Pantelis NatsiavasEmail author
  • Nicos Maglaveras
  • Vassilis Koutkias
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10673)


Linked Data is an emerging paradigm of publishing data in the Internet, accompanied with semantic annotations in a machine understandable fashion. The Internet provides vast data, useful in identifying Public Health trends, e.g. concerning the use of drugs, or the spread of diseases. Current practice of exploiting such data includes their combination from different sources, in order to reinforce their exploitation potential, based on unstructured data management practices and the Linked Data paradigm. In this paper, we present the design, the challenges and an evaluation of a Linked Data model to be used in the context of a platform exploiting social media and bibliographic data sources (namely, Twitter and PubMed), focusing on the application of Adverse Drug Reaction (ADR) signal identification. More specifically, we present the challenges of exploiting Bio2RDF as a Linked Open Data source in this respect, focusing on collecting, updating and normalizing data with the ultimate goal of identifying ADR signals, and evaluate the presented model against three reference evaluation datasets.


Linked Open Data Bio2RDF Adverse Drug Reactions 


  1. 1.
    World Health Organization: WHO collaborating centre for international drug monitoring: the importance of pharmacovigilance. World Health Organization (2002)Google Scholar
  2. 2.
    Sultana, J., Cutroneo, P., Trifirò, G.: Clinical and economic burden of adverse drug reactions. J. Pharmacol. Pharmacother. 4, S73–S77 (2013)CrossRefGoogle Scholar
  3. 3.
    National Safety and Quality Health Service Standards Australian Commission on Safety and Quality in Health Care: Australian Commission on Safety and Quality in Health Care (ACSQHC), Sydney, September 2011Google Scholar
  4. 4.
    Council for International Organizations of Medical Sciences (CIOMS): Practical Aspects of Signal Detection in Pharmacovigilance, Council for International Organizations of Medical Sciences. Report of CIOMS Working Group VIII. CIOMS, Geneva (2010)Google Scholar
  5. 5.
    Berners-Lee, T., Hendler, J., Lassila, O., et al.: The semantic web. Sci. Am. 284, 28–37 (2001)CrossRefGoogle Scholar
  6. 6.
    Harpaz, R., Callahan, A., Tamang, S., Low, Y., Odgers, D., Finlayson, S., Jung, K., LePendu, P., Shah, N.H.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Saf. 37, 777–790 (2014)CrossRefGoogle Scholar
  7. 7.
    Apache UIMA - Apache UIMA.
  8. 8.
    Heath, T., Bizer, C.: Linked data: evolving the web into a global data space. Synth. Lect. Semant. Web Theory Technol. 1, 1–136 (2011)CrossRefGoogle Scholar
  9. 9.
    Natsiavas, P., Maglaveras, N., Koutkias, V.: A public health surveillance platform exploiting free-text sources via natural language processing and linked data: application in adverse drug reaction signal detection using PubMed and Twitter. In: Riaño, D., Lenz, R., Reichert, M. (eds.) KR4HC/ProHealth 2016. LNCS (LNAI), vol. 10096, pp. 51–67. Springer, Cham (2017). doi: 10.1007/978-3-319-55014-5_4 CrossRefGoogle Scholar
  10. 10.
    Samwald, M., Jentzsch, A., Bouton, C., Kallesøe, C.S., Willighagen, E., Hajagos, J., Marshall, M.S., Prud’hommeaux, E., Hassenzadeh, O., Pichler, E., Stephens, S.: Linked open drug data for pharmaceutical research and development. J. Cheminform. 3, 19 (2011)CrossRefGoogle Scholar
  11. 11.
    Callahan, A., Cruz-Toledo, J., Ansell, P., Dumontier, M.: Bio2RDF release 2: improved coverage, interoperability and provenance of life science linked data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 200–212. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38288-8_14 CrossRefGoogle Scholar
  12. 12.
    Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A.C., Liu, Y., Maciejewski, A., Arndt, D., Wilson, M., Neveu, V., Tang, A., Gabriel, G., Ly, C., Adamjee, S., Dame, Z.T., Han, B., Zhou, Y., Wishart, D.S.: DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res. 42, D1091–D1097 (2014)CrossRefGoogle Scholar
  13. 13.
    Hassanzadeh, O., Zhu, Q., Freimuth, R., Boyce, R.: Extending the “web of drug identity” with knowledge extracted from United States product labels. AMIA Jt. Summits Transl. Sci. Proc. 2013, 64–68 (2013)Google Scholar
  14. 14.
    Home -
  15. 15.
    Kuhn, M., Letunic, I., Jensen, L.J., Bork, P.: The SIDER database of drugs and side effects. Nucleic Acids Res. 44, D1075–D1079 (2016)CrossRefGoogle Scholar
  16. 16.
    Hu, Y., Bajorath, J.: Learning from “big data”: compounds and targets. Drug Discov. Today 19, 357–360 (2014)CrossRefGoogle Scholar
  17. 17.
    Gray, A.J.G., Groth, P., Loizou, A., Askjaer, S., Brenninkmeijer, C., Burger, K., Chichester, C., Evelo, C.T., Goble, C., Harland, L., Pettifer, S., Thompson, M., Waagmeester, A., Williams, A.J.: Applying linked data approaches to pharmacology: architectural decisions and implementation. Semant. Web 5, 101–113 (2014)CrossRefGoogle Scholar
  18. 18.
    Groth, P., Loizou, A., Gray, A.J.G., Goble, C., Harland, L., Pettifer, S.: API-centric linked data integration: the open PHACTS discovery platform case study. Web Semant. Sci. Serv. Agents World Wide Web 29, 12–18 (2014)CrossRefGoogle Scholar
  19. 19.
    Herrero-Zazo, M., Segura-Bedmar, I., Hastings, J., Martínez, P.: DINTO: using OWL ontologies and SWRL rules to infer drug-drug interactions and their mechanisms. J. Chem. Inf. Model. 55, 1698–1707 (2015)CrossRefGoogle Scholar
  20. 20.
    Mitraka, E., Waagmeester, A., Burgstaller-Muehlbacher, S., Schriml, L.M., Su, A.I., Good, B.M.: Wikidata: a platform for data integration and dissemination for the life sciences and beyond. bioRxiv (2015)Google Scholar
  21. 21.
    Putman, T.E., Lelong, S., Burgstaller-Muehlbacher, S., Waagmeester, A., Diesh, C., Dunn, N., Munoz-Torres, M., Stupp, G.S., Wu, C., Su, A.I., Good, B.M.: WikiGenomes: an open web application for community consumption and curation of gene annotation data in Wikidata. Database (Oxford) 2017 (2017)Google Scholar
  22. 22.
    Jovanovik, M., Trajanov, D.: Consolidating drug data on a global scale using Linked Data. J. Biomed. Semant. 8, 3 (2017)CrossRefGoogle Scholar
  23. 23.
    Boyce, R.D., Ryan, P.B., Norén, G.N., Schuemie, M.J., Reich, C., Duke, J., Tatonetti, N.P., Trifirò, G., Harpaz, R., Overhage, J.M., Hartzema, A.G., Khayter, M., Voss, E.A., Lambert, C.G., Huser, V., Dumontier, M.: Bridging islands of information to establish an integrated knowledge base of drugs and health outcomes of interest. Drug Saf. 37, 557–567 (2014)CrossRefGoogle Scholar
  24. 24.
    Knowledge Base Workgroup of the Observational Health Data Sciences and Informatics (OHDSI) Collaborative: Large-scale adverse effects related to treatment evidence standardization (LAERTES): an open scalable system for linking pharmacovigilance evidence sources with clinical data. J. Biomed. Semant. 8, 11 (2017)Google Scholar
  25. 25.
    Zaman, S., Sarntivijai, S., Abernethy, D.: Use of biomedical ontologies for integration of biological knowledge for learning and prediction of adverse drug reactions. Gene Regul. Syst. Bio. 11 (2017)Google Scholar
  26. 26.
    Zhu, Q., Tao, C., Shen, F., Chute, C.G.: Exploring the pharmacogenomics knowledge base (PharmGKB) for repositioning breast cancer drugs by leveraging web ontology language (OWL) and cheminformatics approaches. Pac. Symp. Biocomput. 172–182 (2014)Google Scholar
  27. 27.
    Kozák, J., Nečaský, M., Pokorný, J.: Drug encyclopedia – linked data application for physicians. In: Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 41–56. Springer, Cham (2015). doi: 10.1007/978-3-319-25010-6_3 CrossRefGoogle Scholar
  28. 28.
    Doulaverakis, C., Nikolaidis, G., Kleontas, A., Kompatsiaris, I.: GalenOWL: Ontology-based drug recommendations discovery. J. Biomed. Semant. 3, 14 (2012)CrossRefGoogle Scholar
  29. 29.
    Doulaverakis, C., Nikolaidis, G., Kleontas, A., Kompatsiaris, I.: Panacea, a semantic-enabled drug recommendations discovery framework. J. Biomed. Semant. 5, 13 (2014)CrossRefGoogle Scholar
  30. 30.
    Dalleau, K., Marzougui, Y., Da Silva, S., Ringot, P., Ndiaye, N.C., Coulet, A.: Learning from biomedical linked data to suggest valid pharmacogenes. J. Biomed. Semant. 8, 16 (2017)CrossRefGoogle Scholar
  31. 31.
    Zong, N., Kim, H., Ngo, V., Harismendy, O.: Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations. Bioinformatics 33, 2337–2344 (2017)CrossRefGoogle Scholar
  32. 32.
    Chen, B., Ding, Y., Wild, D.J., Barabsi, A., Vidal, M.: Assessing drug target association using semantic linked data. PLoS Comput. Biol. 8, e1002574 (2012)CrossRefGoogle Scholar
  33. 33.
    Muñoz, E., Nováček, V., Vandenbussche, P.-Y.: Using drug similarities for discovery of possible adverse reactions. AMIA Annu. Symp. Proc. 2016, 924–933 (2016)Google Scholar
  34. 34.
    Nazario, D.C., Dantas, M.A.R., Todesco, J.L.: Knowledge engineering: survey of methodologies, techniques and tools. IEEE Lat. Am. Trans. 12, 1553–1559 (2014)CrossRefGoogle Scholar
  35. 35.
    Suárez-Figueroa, M.C., Gómez-Pérez, A., Fernández-López, M.: The NeOn methodology for ontology engineering. In: Suárez-Figueroa, M., Gómez-Pérez, A., Motta, E., Gangemi, A. (eds.) Ontology Engineering in a Networked World, pp. 9–34. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24794-1_2 CrossRefGoogle Scholar
  36. 36.
    Whirl-Carrillo, M., McDonagh, E.M., Hebert, J.M., Gong, L., Sangkuhl, K., Thorn, C.F., Altman, R.B., Klein, T.E.: Pharmacogenomics knowledge for personalized medicine. Clin. Pharmacol. Ther. 92, 414–417 (2012)CrossRefGoogle Scholar
  37. 37.
    Szklarczyk, D., Santos, A., von Mering, C., Jensen, L.J., Bork, P., Kuhn, M., von Mering, C., Jensen, L.J., Bork, P., Kuhn, M.: STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44, D380–D384 (2016)CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Bodenreider, O.: The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 32, D267–D270 (2004)CrossRefGoogle Scholar
  40. 40.
  41. 41.
    Salvadores, M., Alexander, P.R., Musen, M.A., Noy, N.F.: BioPortal as a dataset of linked biomedical ontologies and terminologies in RDF. Semant. Web 4, 277–284 (2013)Google Scholar
  42. 42.
    Dodds, L., Davis, I.: Linked data patterns (2011).
  43. 43.
    Denning, P.J.: The locality principle. Commun. ACM 48, 19 (2005)CrossRefGoogle Scholar
  44. 44.
    Harpaz, R., Odgers, D., Gaskin, G., DuMouchel, W., Winnenburg, R., Bodenreider, O., Ripple, A., Szarfman, A., Sorbello, A., Horvitz, E., White, R.W., Shah, N.H.: A time-indexed reference standard of adverse drug reactions. Sci. Data. 1, 140043 (2014)CrossRefGoogle Scholar
  45. 45.
    Ryan, P.B., Schuemie, M.J., Welebob, E., Duke, J., Valentine, S., Hartzema, A.G.: Defining a reference set to support methodological research in drug safety. Drug Saf. 36, 33–47 (2013)CrossRefGoogle Scholar
  46. 46.
    Coloma, P.M., Avillach, P., Salvo, F., Schuemie, M.J., Ferrajolo, C., Pariente, A., Fourrier-Réglat, A., Molokhia, M., Patadia, V., van der Lei, J., Sturkenboom, M., Trifirò, G.: A reference standard for evaluation of methods for drug safety signal detection using electronic healthcare record databases. Drug Saf. 36, 13–23 (2012)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    Zaveri, A., Rula, A., Maurino, A., Pietrobon, R., Lehmann, J., Auer, S.: Quality assessment for Linked Data: a survey. Semant. Web 7, 63–93 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pantelis Natsiavas
    • 1
    • 2
    Email author
  • Nicos Maglaveras
    • 1
    • 2
  • Vassilis Koutkias
    • 2
  1. 1.Lab of Computing, Medical Informatics and Biomedical Imaging Technologies, Department of MedicineAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Institute of Applied Biosciences, Centre for Research & Technology HellasThermiGreece

Personalised recommendations