Advertisement

Toxicity of Bone-Targeted Agents in Malignancy

  • Caroline Wilson
  • Fiona Taylor
  • Robert Coleman
Chapter

Abstract

The bisphosphonates have been in clinical use for three decades. During this time the adverse event profile and favorable risk-benefit ratio have become clearly defined and strategies identified for minimizing the impact of these side effects on patients. More recently, denosumab has been incorporated into clinical practice and so far demonstrated mild and treatable side effects. Long-term adverse events are infrequent but merit special attention.

In this chapter we review the side effects of the four bisphosphonates licensed for use in malignancy, including clodronate, ibandronate, pamidronate, and zoledronic acid as well as the new targeted agent, denosumab.

Keywords

Bisphosphonates Zoledronic acid Denosumab Toxicity Acute phase reactions Renal impairment Osteonecrosis of the jaw Atypical femoral fracture 

References

  1. 1.
    Coleman RE. Skeletal complications of malignancy. Cancer. 1997;80(8 Suppl):1588–94.CrossRefPubMedGoogle Scholar
  2. 2.
    Early Breast Cancer Clinical Trials Collaborative Group (EBCTCG). Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet. 2015;386(10001):1353–61.CrossRefGoogle Scholar
  3. 3.
    Hadji P, Coleman RE, Wilson C, et al. Adjuvant bisphosphonates in early breast cancer: consensus guidance for clinical practice from a European panel. Ann Oncol. 2016;27(3):379–90.CrossRefPubMedGoogle Scholar
  4. 4.
    Rogers MJ, Gordon S, Benford HL, Coxon FP, Luckman SP, Monkkonen J, et al. Cellular and molecular mechanisms of action of bisphosphonates. Cancer. 2000;88(12 Suppl):2961–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Brown JE, Ellis SP, Lester JE, Gutcher S, Khanna T, Purohit OP, et al. Prolonged efficacy of a single dose of the bisphosphonate zoledronic acid. Clin Cancer Res. 2007;13(18 Pt 1):5406–10.CrossRefPubMedGoogle Scholar
  6. 6.
    Pfister T, Atzpodien E, Bohrmann B, Bauss F. Acute renal effects of intravenous bisphosphonates in the rat. Basic Clin Pharmacol Toxicol. 2005;97(6):374–81.CrossRefPubMedGoogle Scholar
  7. 7.
    Pfister T, Atzpodien E, Bauss F. The renal effects of minimally nephrotoxic doses of ibandronate and zoledronate following single and intermittent intravenous administration in rats. Toxicology. 2003;191(2–3):159–67.CrossRefPubMedGoogle Scholar
  8. 8.
    Body JJ, Pfister T, Bauss F. Preclinical perspectives on bisphosphonate renal safety. Oncologist. 2005;10(Suppl 1):3–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Green SB, Pappas AL. Effects of maternal bisphosphonate use on fetal and neonatal outcomes. Am J Health Syst Pharm. 2014;71(23):2029–36.CrossRefPubMedGoogle Scholar
  10. 10.
    Levy S, Fayez I, Taguchi N, Han JY, Aiello J, Matsui D, et al. Pregnancy outcome following in utero exposure to bisphosphonates. Bone. 2009;44(3):428–30.CrossRefPubMedGoogle Scholar
  11. 11.
    Siminoski K, Fitzgerald AA, Flesch G, Gross MS. Intravenous pamidronate for treatment of reflex sympathetic dystrophy during breast feeding. J Bone Miner Res. 2000;15(10):2052–5.CrossRefPubMedGoogle Scholar
  12. 12.
    Reid IR, Gamble GD, Mesenbrink P, Lakatos P, Black DM. Characterization of and risk factors for the acute-phase response after zoledronic acid. J Clin Endocrinol Metab. 2010;95(9):4380–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Dicuonzo G, Vincenzi B, Santini D, Avvisati G, Rocci L, Battistoni F, et al. Fever after zoledronic acid administration is due to increase in TNF-alpha and IL-6. J Interf Cytokine Res. 2003;23(11):649–54.CrossRefGoogle Scholar
  14. 14.
    Sauty A, Pecherstorfer M, Zimmer-Roth I, Fioroni P, Juillerat L, Markert M, et al. Interleukin-6 and tumor necrosis factor alpha levels after bisphosphonates treatment in vitro and in patients with malignancy. Bone. 1996;18(2):133–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Rossini M, Adami S, Viapiana O, Tripi G, Zanotti R, Ortolani R, et al. Acute phase response after zoledronic acid is associated with long-term effects on white blood cells. Calcif Tissue Int. 2013;93(3):249–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Long-term efficacy and safety of zoledronic acid compared with pamidronate disodium in the treatment of skeletal complications in patients with advanced multiple myeloma or breast carcinoma: a randomized, double-blind, multicenter, comparative trial. Cancer. 2003;98(8):1735–44.CrossRefPubMedGoogle Scholar
  17. 17.
    Body JJ, Lichinitser M, Tjulandin S, Garnero P, Bergstrom B. Oral ibandronate is as active as intravenous zoledronic acid for reducing bone turnover markers in women with breast cancer and bone metastases. Ann Oncol. 2007;18(7):1165–71.CrossRefPubMedGoogle Scholar
  18. 18.
    Sieber P, Lardelli P, Kraenzlin CA, Kraenzlin ME, Meier C. Intravenous bisphosphonates for postmenopausal osteoporosis: safety profiles of zoledronic acid and ibandronate in clinical practice. Clin Drug Investig. 2013;33(2):117–22.CrossRefPubMedGoogle Scholar
  19. 19.
    Coleman RE. Risks and benefits of bisphosphonates. Br J Cancer. 2008;98(11):1736–40.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y, et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol. 2005;23(15):3314–21.CrossRefPubMedGoogle Scholar
  21. 21.
    Tanvetyanon T, Stiff PJ. Management of the adverse effects associated with intravenous bisphosphonates. Ann Oncol. 2006;17(6):897–907.CrossRefPubMedGoogle Scholar
  22. 22.
    Pearce SH, Cheetham TD. Diagnosis and management of vitamin D deficiency. BMJ. 2010;340:b5664.CrossRefPubMedGoogle Scholar
  23. 23.
    Chennuru S, Koduri J, Baumann MA. Risk factors for symptomatic hypocalcaemia complicating treatment with zoledronic acid. Intern Med J. 2008;38(8):635–7.CrossRefPubMedGoogle Scholar
  24. 24.
    Simmons C, Amir E, Dranitsaris G, Clemons M, Wong B, Veith R, et al. Altered calcium metabolism in patients on long-term bisphosphonate therapy for metastatic breast cancer. Anticancer Res. 2009;29(7):2707–11.PubMedGoogle Scholar
  25. 25.
    Markowitz GS, Fine PL, Stack JI, Kunis CL, Radhakrishnan J, Palecki W, et al. Toxic acute tubular necrosis following treatment with zoledronate (Zometa). Kidney Int. 2003;64(1):281–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Markowitz GS, Appel GB, Fine PL, Fenves AZ, Loon NR, Jagannath S, et al. Collapsing focal segmental glomerulosclerosis following treatment with high-dose pamidronate. J Am Soc Nephrol. 2001;12(6):1164–72.PubMedGoogle Scholar
  27. 27.
    Kristensen B, Ejlertsen B, Groenvold M, Hein S, Loft H, Mouridsen HT. Oral clodronate in breast cancer patients with bone metastases: a randomized study. J Intern Med. 1999;246(1):67–74.CrossRefPubMedGoogle Scholar
  28. 28.
    Banerjee D, Asif A, Striker L, Preston RA, Bourgoignie JJ, Roth D. Short-term, high-dose pamidronate-induced acute tubular necrosis: the postulated mechanisms of bisphosphonate nephrotoxicity. Am J Kidney Dis. 2003;41(5):E18.CrossRefPubMedGoogle Scholar
  29. 29.
    Kunin M, Kopolovic J, Avigdor A, Holtzman EJ. Collapsing glomerulopathy induced by long-term treatment with standard-dose pamidronate in a myeloma patient. Nephrol Dial Transplant. 2004;19(3):723–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. JNCI. 2002;94(19):1458–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Rosen LS, Gordon D, Tchekmedyian NS, Yanagihara R, Hirsh V, Krzakowski M, et al. Long-term efficacy and safety of zoledronic acid in the treatment of skeletal metastases in patients with nonsmall cell lung carcinoma and other solid tumors: a randomized, phase III, double-blind, placebo-controlled trial. Cancer. 2004;100(12):2613–21.CrossRefPubMedGoogle Scholar
  32. 32.
    McDermott RS, Kloth DD, Wang H, Hudes GR, Langer CJ. Impact of zoledronic acid on renal function in patients with cancer: clinical significance and development of a predictive model. J Support Oncol. 2006;4(10):524–9.PubMedGoogle Scholar
  33. 33.
    Diel IJ, Weide R, Koppler H, Antras L, Smith M, Green J, et al. Risk of renal impairment after treatment with ibandronate versus zoledronic acid: a retrospective medical records review. Support Care Cancer. 2009;17(6):719–25.CrossRefPubMedGoogle Scholar
  34. 34.
    Weide R, Koppler H, Antras L, Smith M, Chang MP, Green J, et al. Renal toxicity in patients with multiple myeloma receiving zoledronic acid vs. ibandronate: a retrospective medical records review. J Cancer Res Ther. 2010;6(1):31–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Rosen LS, Gordon D, Kaminski M, Howell A, Belch A, Mackey J, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J. 2001;7(5):377–87.PubMedGoogle Scholar
  36. 36.
    Guarneri V, Donati S, Nicolini M, Giovannelli S, D’Amico R, Conte PF. Renal safety and efficacy of i.v. bisphosphonates in patients with skeletal metastases treated for up to 10 years. Oncologist. 2005;10(10):842–8.CrossRefPubMedGoogle Scholar
  37. 37.
    Diel IJ, Bergner R, Grotz KA. Adverse effects of bisphosphonates: current issues. J Support Oncol. 2007;5(10):475–82.PubMedGoogle Scholar
  38. 38.
    Atula S, Powles T, Paterson A, McCloskey E, Nevalainen J, Kanis J. Extended safety profile of oral clodronate after long-term use in primary breast cancer patients. Drug Saf. 2003;26(9):661–71.CrossRefPubMedGoogle Scholar
  39. 39.
    Powles T, Paterson S, Kanis JA, McCloskey E, Ashley S, Tidy A, et al. Randomized, placebo-controlled trial of clodronate in patients with primary operable breast cancer. J Clin Oncol. 2002;20(15):3219–24.CrossRefPubMedGoogle Scholar
  40. 40.
    Tripathy D, Lichinitzer M, Lazarev A, MacLachlan SA, Apffelstaedt J, Budde M, et al. Oral ibandronate for the treatment of metastatic bone disease in breast cancer: efficacy and safety results from a randomized, double-blind, placebo-controlled trial. Ann Oncol. 2004;15(5):743–50.CrossRefPubMedGoogle Scholar
  41. 41.
    Coleman RE, Purohit OP, Black C, Vinholes JJ, Schlosser K, Huss H, et al. Double-blind, randomised, placebo-controlled, dose-finding study of oral ibandronate in patients with metastatic bone disease. Ann Oncol. 1999;10(3):311–6.CrossRefPubMedGoogle Scholar
  42. 42.
    Hadji P, Ziller V, Kyvernitakis J, Schmidt N, Kostev K. Persistence with bisphosphonates in patients with metastatic breast cancer: a retrospective database analysis. J Cancer Res Clin Oncol. 2013;139(7):1149–55.CrossRefPubMedGoogle Scholar
  43. 43.
    Cardwell CR, Abnet CC, Cantwell MM, Murray LJ. Exposure to oral bisphosphonates and risk of esophageal cancer. JAMA. 2010;304(6):657–63.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Green J, Czanner G, Reeves G, Watson J, Wise L, Beral V. Oral bisphosphonates and risk of cancer of oesophagus, stomach, and colorectum: case-control analysis within a UK primary care cohort. BMJ. 2010;341:c4444.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wright E, Schofield PT, Molokhia M. Bisphosphonates and evidence for esophageal and gastric cancer: a systematic review and meta-analysis. BMJ Open. 2015;5(12):e007133.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Rennert G, Pinchev M, Rennert HS, Gruber SB. Use of bisphosphonates and reduced risk of colorectal cancer. J Clin Oncol. 2011;29(9):1146–50.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Singh S, Singh AH, Musad MH, Limburg PJ. Bisphosphonates are associated with reduced risk of colorectal cancer: a systematic review and meta-analysis. Clin Gaastroenterol Hepatol. 2013;11(3):232–9.CrossRefGoogle Scholar
  48. 48.
    Black DM, Delmas PD, Eastell R, Reid IR, Boonen S, Cauley JA, et al. Once-yearly zoledronic acid for treatment of postmenopausal osteoporosis. N Engl J Med. 2007;356(18):1809–22.CrossRefPubMedGoogle Scholar
  49. 49.
    Loke YK, Jeevanantham V, Singh S. Bisphosphonates and atrial fibrillation: systematic review and meta-analysis. Drug Saf. 2009;32(3):219–28.CrossRefPubMedGoogle Scholar
  50. 50.
    Kim DH, Rogers JR, Fulchino LA, Kim CA, Solomon DH, Kim SC. Bisphosphontaes and risk of cardiovascular events: a meta-analysis. PLoS One. 2015;10(4):e0122646.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Coleman RE, Marshall H, Cameron D, Dodwell D, Burkinshaw R, Keane M, et al. Breast-cancer adjuvant therapy with zoledronic acid. N Engl J Med. 2011;365:1396–405.CrossRefPubMedGoogle Scholar
  52. 52.
    Fraunfelder FW. Ocular side effects associated with bisphosphonates. Drugs Today (Barc). 2003;39(11):829–35.CrossRefGoogle Scholar
  53. 53.
    Patel DV, Horne A, House M, Reid IR, McGhee CN. The incidence of acute antrioruveitis after intravenous zoledronate. Opthalmology. 2103;120(4):773–6.CrossRefGoogle Scholar
  54. 54.
    Fietta P, Manganelli P, Lodigiani L. Clodronate induced uveitis. Ann Rheum Dis. 2003;62(4):378.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Sharma NS, Ooi JL, Masselos K, Hooper MJ, Francis IC. Zoledronic acid infusion and orbital inflammatory disease. N Engl J Med. 2008;359(13):1410–1.CrossRefPubMedGoogle Scholar
  56. 56.
    Tsourdi E, Rachner TD, Gruber M, Hamann C, Ziemssen T, Hofbauer LC. Seizures associated with zoledronic acid for osteoporosis. J Clin Endocrinol Metab. 2011;96(7):1955–9.CrossRefPubMedGoogle Scholar
  57. 57.
    Marx RE. Pamidronate (Aredia) and zoledronate (Zometa) induced avascular necrosis of the jaws: a growing epidemic. J Oral Maxillofac Surg. 2003;61(9):1115–7.CrossRefPubMedGoogle Scholar
  58. 58.
    Khosla S, Burr D, Cauley J, Dempster DW, Ebeling PR, Felsenberg D, et al. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2007;22(10):1479–91.CrossRefPubMedGoogle Scholar
  59. 59.
    Yamashita J, McCauley LK, Van Poznak C. Updates on osteonecrosis of the jaw. Curr Opin Support Palliat Care. 2010;4(3):200–6.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lo JC, O’Ryan FS, Gordon NP, Yang J, Hui RL, Martin D, et al. Prevalence of osteonecrosis of the jaw in patients with oral bisphosphonate exposure. J Oral Maxillofac Surg. 2010;68(2):243–53.CrossRefPubMedGoogle Scholar
  61. 61.
    Gralow J, Barlow W, Paterson AHG, Lew D, et al. Phase III trial of bisphosphonates as adjuvant therapy in primary breast cancer: SWOG/Alliance/ECOG-ACRIN/NCIC Clinical Trials Group/NRG Oncology study S0307. 2015 ASCO Annual Meeting; 2015.Google Scholar
  62. 62.
    Stopeck AT, Lipton A, Body JJ, Steger GG, Tonkin K, de Boer RH, et al. Denosumab compared with zoledronic acid for the treatment of bone metastases in patients with advanced breast cancer: a randomized, double-blind study. J Clin Oncol. 2010;28(35):5132–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Henry DH, Costa L, Goldwasser F, Hirsh V, Hungria V, Prausova J, et al. Randomized, double-blind study of denosumab versus zoledronic acid in the treatment of bone metastases in patients with advanced cancer (excluding breast and prostate cancer) or multiple myeloma. J Clin Oncol. 2011;29(9):1125–32.CrossRefPubMedGoogle Scholar
  64. 64.
    Rathbone EJ, Brown JE, Marshall HC, Collinson M, Liversedge V, et al. Osteonecrosis of the jaw and oral health-related quality of life after adjuvant zoledronic acid: an adjuvant zoledronic acid to reduce recurrence trial subprotocol (BIG01/04). J Clin Oncol. 2013;31(21):2685–91.CrossRefPubMedGoogle Scholar
  65. 65.
    Dimopoulos MA, Kastritis E, Bamia C, Melakopoulos I, Gika D, Roussou M, et al. Reduction of osteonecrosis of the jaw (ONJ) after implementation of preventive measures in patients with multiple myeloma treated with zoledronic acid. Ann Oncol. 2009;20(1):117–20.CrossRefPubMedGoogle Scholar
  66. 66.
    Ripamonti CI, Lucchesi M, Giusti R. Prevention and management of osteonecrosis of the jaw secondary to bone-targeted therapy in patients with kidney cancer. Curr Opin Support Palliat Care. 2016;10(3):273–80.CrossRefPubMedGoogle Scholar
  67. 67.
    Singer FR. Metabolic bone disease: atypical femoral fractures. J Biomech. 2011;44(2):244–7.CrossRefPubMedGoogle Scholar
  68. 68.
    Adler RA, El-Hajj Fuleihan G, Bauer DC, Camacho PM, Clarke BL, Clines GA, et al. Managing osteoporosis in patients on long-term bisphosphonate treatment: report of a task force of the American Society for Bone and Mineral Research. J Bone Miner Res. 2016;31(1):16–35.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Edwards BJ, Sun M, West DP, Guindani M, Lin YH, Lu H, et al. Incidence of atypical femur fractures in cancer patients: the MD Anderson Cancer Center experience. J Bone Miner Res. 2016;31(8):1569–76.CrossRefPubMedGoogle Scholar
  70. 70.
    Coleman R, Burkinshaw R, Winter M, Neville-Webbe H, Lester J, Woodward E, et al. Zoledronic acid. Expert Opin Drug Saf. 2011;10(1):133–45.CrossRefPubMedGoogle Scholar
  71. 71.
    Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93(2):165–76.CrossRefGoogle Scholar
  72. 72.
    Nakagawa N, Kinosaki M, Yamaguchi K, Shima N, Yasuda H, Yano K, Morinaga T, et al. RANK is the essential signalling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253(2):395–400.CrossRefPubMedGoogle Scholar
  73. 73.
    Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev. 2008;29(2):155–92.CrossRefPubMedGoogle Scholar
  74. 74.
    Ellis GK, Bone HG, Chlebowski R, Paul D, Spadafora S, Smith J, Fan M, Jun S. Randomised trial of denosumab in patients receiving adjuvant aromatase inhibitors for nonmetastatic breast cancer. J Clin Oncol. 2008;26(30):4875–82.CrossRefPubMedGoogle Scholar
  75. 75.
    Jones DH, Nakashima T, Sanchez OH, Kozieradzki I, Komarova SV, Sarosi I, Morony S, et al. Regulation of cancer cell migration and bone metastasis by RANKL. Nature. 2006;440(7084):692–6.CrossRefPubMedGoogle Scholar
  76. 76.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.CrossRefPubMedGoogle Scholar
  77. 77.
    Smith MR, Egerdie B, Toriz N, Feldman R, Tammela TL, Saad F, Heracek J, et al. Denosumab in men receiving androgen-deprivation therapy for prostate cancer. N Engl J Med. 2009;361(8):745–55.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Gnant M, Pfeiler G, Dubsky PC, Hubalek M, Greil R, Jakesz R, et al. Adjuvant denosumab in breast cancer (ABCSG-18): a multicentre, randomised, double-blind, placebo-controlled trial. Lancet. 2015;386(9992):433–43.CrossRefPubMedGoogle Scholar
  79. 79.
    Fizazi K, Carducci M, Smith M, Brown J, Karsh L, Milecki P, Shore N, et al. Denosumab versus zoledronic acid for treatment for bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet. 2011;377:813–22.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lipton A, Steger GG, Figueria J, et al. Extended efficacy and safety of denosumab in breast cancer patients with bone metastases not receiving prior bisphosphonate therapy. Clin Cancer Res. 2008;14:6690–6.CrossRefPubMedGoogle Scholar
  81. 81.
    Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13(18):2412–24.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Fata JE, Kong YY, Li J, Sasaki T, Irie-Sasaki J, Moorehead RA, Elliott R, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103(1):41–50.CrossRefPubMedGoogle Scholar
  83. 83.
    Bussiere JL, Pyrah I, Boyce R, Branstetter D, Loomis M, Andrews-Cleavenger D, et al. Reproductive toxicity of denosumab in cynomolgus monkeys. Reprod Toxicol. 2013;42:27–40.CrossRefPubMedGoogle Scholar
  84. 84.
    Reid IR, Miller PD, Brown JP, Kendler DL, Fahrleitner-Pammer A, Valter I, Maasala K, et al. Effects of denosumab on bone histomorphometry: the FREEDOM and STAND studies. J Bone Miner Res. 2010;25(10):2256–65.CrossRefPubMedGoogle Scholar
  85. 85.
    Body JJ, Bone HG, De Boer RH, Stopeck A, van Poznak C, Damiao R, et al. Hypocalcaemia in patients with metastatic bone disease treated with denosumab. Eur J Cancer. 2015;51(13):1812–21.CrossRefPubMedGoogle Scholar
  86. 86.
    Kinoshita Y, Arai M, Ito N, Takashi Y, Makita N, Nangaku M, et al. Hish serum ALP level is associated with increased risk of denosumab-related hypocalcemia in patients with bone metastases from solid tumors. Endocr J. 2016;63(5):479–84.CrossRefPubMedGoogle Scholar
  87. 87.
    Selga J, Nuñez JH, Minguell J, Lalanza M, Garrido M. Simultaneous bilateral atypical femoral fracture in a patient receiving denosumab: case report and literature review. Osteoporos Int. 2016;27(2):827–32.CrossRefPubMedGoogle Scholar
  88. 88.
    Popp AW, Zysset PK, Lippuner K. Rebound-associated vertebral fractures after discontinuation of denosumab-from clinic and biomechanics. Osteoporos Int. 2016;27(5):1917–21.CrossRefPubMedGoogle Scholar
  89. 89.
    McCloskey EV, MacLennan IC, Drayson MT, Chapman C, Dunn J, Kanis JA. A randomized trial of the effect of clodronate on skeletal morbidity in multiple myeloma. MRC working party on leukaemia in adults. Br J Haematol. 1998;100(2):317–25.CrossRefPubMedGoogle Scholar
  90. 90.
    Lahtinen R, Laakso M, Palva I, Virkkunen P, Elomaa I. Randomised, placebo-controlled multicentre trial of clodronate in multiple myeloma. Finnish Leukaemia Group. Lancet. 1992;340(8827):1049–52.CrossRefPubMedGoogle Scholar
  91. 91.
    Dearnaley DP, Mason MD, Parmar MK, Sanders K, Sydes MR. Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol. 2009;10(9):872–6.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Diel IJ, Body JJ, Lichinitser MR, Kreuser ED, Dornoff W, Gorbunova VA, et al. Improved quality of life after long-term treatment with the bisphosphonate ibandronate in patients with metastatic bone disease due to breast cancer. Eur J Cancer. 2004;40(11):1704–12.CrossRefPubMedGoogle Scholar
  93. 93.
    Berenson JR, Lichtenstein A, Porter L, Dimopoulos MA, Bordoni R, George S, et al. Efficacy of pamidronate in reducing skeletal events in patients with advanced multiple myeloma. Myeloma Aredia Study Group. N Engl J Med. 1996;334(8):488–93.CrossRefPubMedGoogle Scholar
  94. 94.
    Hortobagyi GN, Theriault RL, Porter L, Blayney D, Lipton A, Sinoff C, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastases. Protocol 19 Aredia Breast Cancer Study Group. N Engl J Med. 1996;335(24):1785–91.CrossRefPubMedGoogle Scholar
  95. 95.
    Theriault RL, Lipton A, Hortobagyi GN, Leff R, Gluck S, Stewart JF, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. Protocol 18 Aredia Breast Cancer Study Group. J Clin Oncol. 1999;17(3):846–54.CrossRefPubMedGoogle Scholar
  96. 96.
    Rosen LS, Gordon D, Tchekmedyian S, Yanagihara R, Hirsh V, Krzakowski M, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial--the Zoledronic Acid Lung Cancer and Other Solid Tumors Study Group. J Clin Oncol. 2003;21(16):3150–7.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Academic Unit of Clinical OncologyWeston Park Hospital, University of SheffieldSheffieldUK

Personalised recommendations