Advertisement

Cardiotoxicity

  • I. Brana
  • E. Zamora
  • G. Oristrell
  • J. Tabernero
Chapter

Abstract

While outcomes in cancer patients have dramatically improved with the development of novel cancer chemotherapies and combination treatment, this is nonetheless associated with emerging concerns over drug-induced cardiotoxicity. Moreover, the recent incorporation of targeted therapies into therapeutic regimens has widened the cardiotoxic spectrum. Awareness of anticancer drug-induced cardiotoxicity is essential for adequate patient monitoring and early cardiotoxicity detection and treatment. This rising concern is also reflected in drug development, as efforts have been made to improve the characterization of potential cardiotoxicity of new compounds during the early phases of development and to design safer drugs. This chapter summarizes the major cardiotoxic effects and pathophysiology of a large number of antineoplastic treatments currently in use. Existing recommendations for early treatment and future development are also described.

Keywords

Cardiotoxicity Side effect Left ventricular dysfunction Heart failure Angina Arrhythmia QTc interval 

References

  1. 1.
    Oeffinger KC, Mertens AC, Sklar CA, Kawashima T, Hudson MM, Meadows AT, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572–82.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Armstrong GT, Liu Q, Yasui Y, Neglia JP, Leisenring W, Robison LL, et al. Late mortality among 5-year survivors of childhood cancer: a summary from the childhood cancer survivor study. J Clin Oncol. 2009;27(14):2328–38.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Armenian SH, Bhatia S. Cardiovascular disease after hematopoietic cell transplantation – lessons learned. Haematologica. 2008;93(8):1132–6.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Tukenova M, Guibout C, Oberlin O, Doyon F, Mousannif A, Haddy N, et al. Role of cancer treatment in long-term overall and cardiovascular mortality after childhood cancer. J Clin Oncol. 2010;28(8):1308–15.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ewer MS, Ewer SM. Cardiotoxicity of anticancer treatments: what the cardiologist needs to know. Nat Rev Cardiol. 2010;7(10):564–75.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Albini A, Pennesi G, Donatelli F, Cammarota R, De Flora S, Noonan DM. Cardiotoxicity of anticancer drugs: the need for cardio-oncology and cardio-oncological prevention. J Natl Cancer Inst. 2010;102(1):14–25.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Ewer MS, Lippman SM. Type II chemotherapy-related cardiac dysfunction: time to recognize a new entity. J Clin Oncol. 2005;23(13):2900–2.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Jones RL, Swanton C, Ewer MS. Anthracycline cardiotoxicity. Expert Opin Drug Saf. 2006;5(6):791–809.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53(24):2231–47.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Brana I, Tabernero J. Cardiotoxicity. Ann Oncol. 2010;21(Suppl 7):vii173–vii9.PubMedGoogle Scholar
  11. 11.
    Steinberg JS, Cohen AJ, Wasserman AG, Cohen P, Ross AM. Acute arrhythmogenicity of doxorubicin administration. Cancer. 1987;60(6):1213–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Harrison DT, Sanders LA. Pericarditis in a case of early daunorubicin cardiomyopathy. Ann Intern Med. 1976;85(3):339–41.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, et al. Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol. 2005;23(12):2629–36.PubMedCrossRefGoogle Scholar
  14. 14.
    Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, et al. Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer. 2010;10:337. Epub 2010/07/01.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Von Hoff DD, Layard MW, Basa P. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med. 1979;91(5):710–7.CrossRefGoogle Scholar
  16. 16.
    Steinherz LJ, Steinherz PG, Tan CTC, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. J Am Med Assoc. 1991;266(12):1672–7.CrossRefGoogle Scholar
  17. 17.
    Hershman DL, McBride RB, Eisenberger A, Wei YT, Grann VR, Jacobson JS. Doxorubicin, cardiac risk factors, and cardiac toxicity in elderly patients with diffuse B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2008;26(19):3159–65.PubMedCrossRefGoogle Scholar
  18. 18.
    Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer. 2003;97(11):2869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang X, Liu W, Sun C-L, Armenian SH, Hakonarson H, Hageman L, et al. Hyaluronan synthase 3 variant and anthracycline-related cardiomyopathy: a report from the children’s oncology group. J Clin Oncol. 2014;32(7):647–53.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lyu YL, Kerrigan JE, Lin C-P, Azarova AM, Tsai Y-C, Ban Y, et al. Topoisomerase IIβ–mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 2007;67(18):8839–46.PubMedCrossRefGoogle Scholar
  21. 21.
    Billingham ME, Bristow MR, Glatstein E, Mason JW, Masek MA, Daniels JR. Adriamycin cardiotoxicity: endomyocardial biopsy evidence of enhancement by irradiation. Am J Surg Pathol. 1977;1(1):17–23. Epub 1977/03/01.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Billingham ME, Mason JW, Bristow MR, Daniels JR. Anthracycline cardiomyopathy monitored by morphologic changes. Cancer Treat Rep. 1978;62(6):865–72. Epub 1978/06/01.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Mackay B, Ewer MS, Carrasco CH, Benjamin RS. Assessment of anthracycline cardiomyopathy by endomyocardial biopsy. Ultrastruct Pathol. 1994;18(1–2):203–11. Epub 1994/01/01.PubMedCrossRefGoogle Scholar
  24. 24.
    van Dalen EC, van der Pal Helena JH, Caron Huib N, Kremer Leontien CM. Different dosage schedules for reducing cardiotoxicity in cancer patients receiving anthracycline chemotherapy. Cochrane Database Syst Rev. 2009;4:CD005008. Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD005008/frame.html Google Scholar
  25. 25.
    Bonneterre J, Roché H, Kerbrat P, Fumoleau P, Goudier MJ, Fargeot P, et al. Long-term cardiac follow-up in relapse-free patients after six courses of fluorouracil, epirubicin, and cyclophosphamide, with either 50 or 100 mg of epirubicin, as adjuvant therapy for node-positive breast cancer: French Adjuvant Study Group. J Clin Oncol. 2004;22(15):3070–9.PubMedCrossRefGoogle Scholar
  26. 26.
    Jain KK, Casper ES, Geller NL. A prospective randomized comparison of epirubicin and doxorubicin in patients with advanced breast cancer. J Clin Oncol. 1985;3(6):818–26.PubMedCrossRefGoogle Scholar
  27. 27.
    Ryberg M, Nielsen D, Cortese G, Nielsen G, Skovsgaard T, Andersen PK. New insight into epirubicin cardiac toxicity: competing risks analysis of 1097 breast cancer patients. J Natl Cancer Inst. 2008;100(15):1058–67.PubMedCrossRefGoogle Scholar
  28. 28.
    Bedano PM, Brames MJ, Williams SD, Juliar BE, Einhorn LH. Phase II study of cisplatin plus epirubicin salvage chemotherapy in refractory germ cell tumors. J Clin Oncol. 2006;24(34):5403–7.PubMedCrossRefGoogle Scholar
  29. 29.
    Valero V, Buzdar AU, Theriault RL, Azarnia N, Fonseca GA, Willey J, et al. Phase II trial of liposome-encapsulated doxorubicin, cyclophosphamide, and fluorouracil as first-line therapy in patients with metastatic breast cancer. J Clin Oncol. 1999;17(5):1425–34.PubMedCrossRefGoogle Scholar
  30. 30.
    van Dalen EC, Michiels Erna MC, Caron Huib N, Kremer Leontien CM. Different anthracycline derivates for reducing cardiotoxicity in cancer patients. Cochrane Database Syst Rev. 2010;5:CD005006. Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD005006/frame.html Google Scholar
  31. 31.
    Hensley ML, Hagerty KL, Kewalramani T, Green DM, Meropol NJ, Wasserman TH, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol. 2009;27(1):127–45.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Posner LE, Dukart G, Goldberg J. Mitoxantrone: an overview of safety and toxicity. Investig New Drugs. 1985;3(2):123–32.CrossRefGoogle Scholar
  33. 33.
    Dow E, Schulman H, Agura E. Cyclophosphamide cardiac injury mimicking acute myocardial infarction. Bone Marrow Transplant. 1993;12(2):169–72.PubMedGoogle Scholar
  34. 34.
    Katayama M, Imai Y, Hashimoto H, Kurata M, Nagai K, Tamita K, et al. Fulminant fatal cardiotoxicity following cyclophosphamide therapy. J Cardiol. 2009;54(2):330–4.PubMedCrossRefGoogle Scholar
  35. 35.
    Costa RB, Kurra G, Greenberg L, Geyer CE. Efficacy and cardiac safety of adjuvant trastuzumab-based chemotherapy regimens for HER2-positive early breast cancer. Ann Oncol. 2010;21(11):2153–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Grazette LP, Boecker W, Matsui T, Semigran M, Force TL, Hajjar RJ, et al. Inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes: implications for herceptin-induced cardiomyopathy. J Am Coll Cardiol. 2004;44(11):2231–8.PubMedCrossRefGoogle Scholar
  38. 38.
    de Korte MA, de Vries EGE, Lub-de Hooge MN, Jager PL, Gietema JA, van der Graaf WTA, et al. 111Indium-trastuzumab visualises myocardial human epidermal growth factor receptor 2 expression shortly after anthracycline treatment but not during heart failure: a clue to uncover the mechanisms of trastuzumab-related cardiotoxicity. Eur J Cancer. 2007;43(14):2046–51.PubMedCrossRefGoogle Scholar
  39. 39.
    Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, et al. Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol. 2002;20(5):1215–21.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Tan-Chiu E, Yothers G, Romond E, Geyer CE, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2–overexpressing breast cancer: NSABP B-31. J Clin Oncol. 2005;23(31):7811–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Serrano C, Cortés J, De Mattos-Arruda L, Bellet M, Gómez P, Saura C, et al. Trastuzumab-related cardiotoxicity in the elderly: a role for cardiovascular risk factors. Ann Oncol. 2011;23(4):897–902.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344(11):783–92. Epub 2001/03/15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353(16):1659–72.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Romond EH, Jeong J-H, Rastogi P, Swain SM, Jr CEG, Ewer MS, et al. Seven-year follow-up assessment of cardiac function in NSABP B-31, a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel (ACP) with ACP plus trastuzumab as adjuvant therapy for patients with node-positive, human epidermal growth factor receptor 2–positive breast cancer. J Clin Oncol. 2012;30(31):3792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Slamon D, Eiermann W, Robert N, Pienkowski T, Martin M, Press M, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ezaz G, Long JB, Gross CP, Chen J. Risk prediction model for heart failure and cardiomyopathy after adjuvant trastuzumab therapy for breast cancer. J Am Heart Assoc. 2014;3(1):e000472.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Perez EA, Koehler M, Byrne J, Preston AJ, Rappold E, Ewer MS. Cardiac safety of lapatinib: pooled analysis of 3689 patients enrolled in clinical trials. Mayo Clin Proc. 2008;83(6):679–86.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367(19):1783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Food and Drug Administration. Ado-Trastuzumab emtansine: highlights of prescribing information. 2016 [12 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125427s096lbl.pdf.
  50. 50.
    Baselga J, Gelmon KA, Verma S, Wardley A, Conte P, Miles D, et al. Phase II Trial of pertuzumab and trastuzumab in patients with human epidermal growth factor receptor 2–positive metastatic breast cancer that progressed during prior trastuzumab therapy. J Clin Oncol. 2010;28(7):1138–44.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Swain SM, Ewer MS, Cortés J, Amadori D, Miles D, Knott A, et al. Cardiac tolerability of pertuzumab plus trastuzumab plus docetaxel in patients with HER2-positive metastatic breast cancer in CLEOPATRA: a randomized, double-blind, placebo-controlled phase III study. Oncologist. 2013;18(3):257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Food and Drug Administration. Pertuzumab: highlights of prescribing information. 2016 [12 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/125409s109lbl.pdf.
  53. 53.
    Shah RR, Morganroth J, Shah DR. Cardiovascular safety of tyrosine kinase inhibitors: with a special focus on cardiac repolarisation (QT interval). Drug Saf. 2013;36(5):295–316.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Chu TF, Rupnick MA, Kerkela R, Dallabrida SM, Zurakowski D, Nguyen L, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Atallah E, Durand JB, Kantarjian H, Cortes J. Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood. 2007;110(4):1233–7.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Kerkela R, Grazette L, Yacobi R, Iliescu C, Patten R, Beahm C, et al. Cardiotoxicity of the cancer therapeutic agent imatinib mesylate. Nat Med. 2006;12(8):908–16.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Food & Drug Administration US. VELCADE® prescribing information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021602s029s030lbl.pdf.
  58. 58.
    Fu HY, Minamino T, Tsukamoto O, Sawada T, Asai M, Kato H, et al. Overexpression of endoplasmic reticulum-resident chaperone attenuates cardiomyocyte death induced by proteasome inhibition. Cardiovasc Res. 2008;79(4):600–10.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Armenian SH, Xu L, Ky B, Sun C, Farol LT, Pal SK, et al. Cardiovascular disease among survivors of adult-onset cancer: a community-based retrospective cohort study. J Clin Oncol. 2016;34(10):1122–30.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chai-Adisaksopha C, Lam W, Hillis C. Major arterial events in patients with chronic myeloid leukemia treated with tyrosine kinase inhibitors: a meta-analysis. Leuk Lymphoma. 2016;57(6):1300–10.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    De Forni M, Malet-Martino MC, Jaillais P, Shubinski RE, Bachaud JM, Lemaire L, et al. Cardiotoxicity of high-dose continuous infusion fluorouracil: a prospective clinical study. J Clin Oncol. 1992;10(11):1795–801.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Van Cutsem E, Hoff PM, Blum JL, Abt M, Osterwalder B. Incidence of cardiotoxicity with the oral fluoropyrimidine capecitabine is typical of that reported with 5-fluorouracil [2]. Ann Oncol. 2002;13(3):484–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Rezkalla S, Kloner RA, Ensley J, Al-Sarraf M, Revels S, Olivenstein A, et al. Continuous ambulatory ECG monitoring during fluorouracil therapy: a prospective study. J Clin Oncol. 1989;7(4):509–14.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Kosmas C, Kallistratos MS, Kopterides P, Syrios J, Skopelitis H, Mylonakis N, et al. Cardiotoxicity of fluoropyrimidines in different schedules of administration: a prospective study. J Cancer Res Clin Oncol. 2008;134(1):75–82.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Saif MW, Shah MM, Shah AR. Fluoropyrimidine-associated cardiotoxicity: revisited. Expert Opin Drug Saf. 2009;8(2):191–202.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Jones RL, Ewer MS. Cardiac and cardiovascular toxicity of nonanthracycline anticancer drugs. Expert Rev Anticancer Ther. 2006;6(9):1249–69.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kilickap S, Abali H, Celik I. Bevacizumab, bleeding, thrombosis, and warfarin. J Clin Oncol. 2003;21(18):3542.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Scappaticci FA, Skillings JR, Holden SN, Gerber HP, Miller K, Kabbinavar F, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. J Natl Cancer Inst. 2007;99(16):1232–9.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sugrue M, Yi J, Purdie D, Dong W, Grothey A, Kozloff M. Serious arterial thromboembolic events (sATE) in patients (pts) with metastatic colorectal cancer (mCRC) treated with bevacizumab (BV): results from the BRiTE registry. Proc Am Soc Clin Oncol. 2007;25:4136.Google Scholar
  70. 70.
    Schmidinger M, Zielinski CC, Vogl UM, Bojic A, Bojic M, Schukro C, et al. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol. 2008;26(32):5204–12.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Food and Drug Administration. Axitinib: highlights of prescribing information. 2014 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202324s002lbl.pdf.
  72. 72.
    Food and Drug Administration. Pazopanib: highlights of prescribing information. 2016 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/022465s023lbl.pdf.
  73. 73.
    Food and Drug Administration. Nintedanib: highlights of prescribing information. 2014 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/202324s002lbl.pdf.
  74. 74.
    Food and Drug Administration. Regorafenib: highlights of prescribing information. 2016 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203085s006lbl.pdf.
  75. 75.
    Food and Drug Administration. Cabozantinib: highlights of prescribing information. 2016 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203756s002lbl.pdf.
  76. 76.
    Food and Drug Administration. Lenvatinib: highlights of prescribing information. 2016 [11 Dic 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/206947s003lbl.pdf.
  77. 77.
    Food and Drug Administration. Ponatinib: highlights of prescription information. 2016 [11 Dec 2016]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2016/203469s022lbl.pdf.
  78. 78.
    Strevel EL, Ing DJ, Siu LL. Molecularly targeted oncology therapeutics and prolongation of the QT interval. J Clin Oncol. 2007;25(22):3362–71.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Ederhy S, Cohen A, Dufaitre G, Izzedine H, Massard C, Meuleman C, et al. QT interval prolongation among patients treated with angiogenesis inhibitors. Target Oncol. 2009;4(2):89–97.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Morgan C, Tillett T, Braybrooke J, Ajithkumar T. Management of uncommon chemotherapy-induced emergencies. Lancet Oncol. 2011;12(8):806–14.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Al-Khatib SM, Allen LaPointe NM, Kramer JM, Califf RM. What Clinicians Should Know about the QT Interval. J Am Med Assoc. 2003;289(16):2120–7.CrossRefGoogle Scholar
  82. 82.
    Viskin S, Rosovski U, Sands AJ, Chen E, Kistler PM, Kalman JM, et al. Inaccurate electrocardiographic interpretation of long QT: the majority of physicians cannot recognize a long QT when they see one. Heart Rhythm. 2005;2(6):569–74.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Curran ME, Splawski I, Timothy KW, Vincent GM, Green ED, Keating MT. A molecular basis for cardiac arrhythmia: HERG mutations cause long QT syndrome. Cell. 1995;80(5):795–803.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Mitcheson JS, Chen J, Lin M, Culberson C, Sanguinetti MC. A structural basis for drug-induced long QT syndrome. Proc Natl Acad Sci U S A. 2000;97(22):12329–33.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Raschi E, Vasina V, Poluzzi E, De Ponti F. The hERG K+ channel: target and antitarget strategies in drug development. Pharmacol Res. 2008;57(3):181–95.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Varterasian M, Fingert H, Agin M, Meyer M, Cooney M, Radivoyevitch T, et al. Consideration of QT/QTc interval data in a phase I study in patients with advanced cancer (multiple letters) [1]. Clin Cancer Res. 2004;10(17):5967–9.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Davey P. How to correct the QT interval for the effects of heart rate in clinical studies. J Pharmacol Toxicol Methods. 2002;48(1):3–9.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Bates SE, Rosing DR, Fojo T, Piekarz RL. Challenges of evaluating the cardiac effects of anticancer agents. Clin Cancer Res. 2006;12(13):3871–4.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Yarnoz MJ, Curtis AB. More reasons why men and women are not the same (gender differences in electrophysiology and arrhythmias). Am J Cardiol. 2008;101(9):1291–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S. Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine. 2003;82(4):282–90.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Lasser KE, Allen PD, Woolhandler SJ, Himmelstein DU, Wolfe SM, Bor DH. Timing of new black box warnings and withdrawals for prescription medications. J Am Med Assoc. 2002;287(17):2215–20.CrossRefGoogle Scholar
  92. 92.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonised tripartite guideline: the clinical evaluation of QT/QTc interval prolongation and pro-arrhythmic potential for non-antiarrhythmic drugs E14. 2005 [cited 2011 17 Nov]; Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Efficacy/E14/Step4/E14_Guideline.pdf.
  93. 93.
    Sarapa N, Britto MR. Challenges of characterizing proarrhythmic risk due to QTc prolongaton induced by nonadjuvant anticancer agents. Expert Opin Drug Saf. 2008;7(3):305–18.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Food & Drug Administration US. TASIGNA® label information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022068s007lbl.pdf.
  95. 95.
    Piekarz RL, Frye AR, Wright JJ, Steinberg SM, Liewehr DJ, Rosing DR, et al. Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma. Clin Cancer Res. 2006;12(12):3762–73.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Becker TK, Yeung SCJ. Drug-induced QT interval prolongation in cancer patients. Oncol Rev. 2010;4(4):223–32.CrossRefGoogle Scholar
  97. 97.
    Nousiainen T, Vanninen E, Rantala A, Jantunen E, Hartikainen J. QT dispersion and late potentials during doxorubicin therapy for non-Hodgkin’s lymphoma. J Intern Med. 1999;245(4):359–64. Epub 1999/06/05.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Kuittinen T, Jantunen E, Vanninen E, Mussalo H, Nousiainen T, Hartikainen J. Late potentials and QT dispersion after high-dose chemotherapy in patients with non-Hodgkin lymphoma. Clin Physiol Funct Imaging. 2010;30(3):175–80. Epub 2010/02/06.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Pudil R, Horacek J, Vojacek J, Jakl M. Anthracycline therapy induces very early increase in QT dispersion and QTc prolongation. Circulation. 2010;122(2):e385.Google Scholar
  100. 100.
    Owczuk R, Wujtewicz MA, Sawicka W, Wujtewicz M, Swierblewski M. Is prolongation of the QTc interval during isoflurane anaesthesia more prominent in women pretreated with anthracyclines for breast cancer? Br J Anaesth. 2004;92(5):658–61. Epub 2004/04/06.PubMedCrossRefGoogle Scholar
  101. 101.
    Soignet SL, Frankel SR, Douer D, Tallman MS, Kantarjian H, Calleja E, et al. United States multicenter study of arsenic trioxide in relapsed acute promyelocytic leukemia. J Clin Oncol. 2001;19(18):3852–60.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Barbey JT, Pezzullo JC, Soignet SL. Effect of arsenic trioxide on QT interval in patients with advanced malignancies. J Clin Oncol. 2003;21(19):3609–15.PubMedCrossRefGoogle Scholar
  103. 103.
    Stewart T, Pavlakis N, Ward M. Cardiotoxicity with 5-fluorouracil and capecitabine: more than just vasospastic angina. Intern Med J. 2010;40(4):303–7. Epub 2010/06/10.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Wacker A, Lersch C, Scherpinski U, Reindl L, Seyfarth M. High incidence of angina pectoris in patients treated with 5-fluorouracil. A planned surveillance study with 102 patients. Oncology. 2003;65(2):108–12. Epub 2003/08/22.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Nakamae H, Tsumura K, Hino M, Hayashi T, Tatsumi N. QT dispersion as a predictor of acute heart failure after high-dose cyclophosphamide. Lancet. 2000;355(9206):805–6.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Shah MH, Binkley P, Chan K, Xiao J, Arbogast D, Collamore M, et al. Cardiotoxicity of histone deacetylase inhibitor depsipeptide in patients with metastatic neuroendocrine tumors. Clin Cancer Res. 2006;12(13):3997–4003.PubMedCrossRefGoogle Scholar
  107. 107.
    Food & Drug Administration US. ISTODAX® prescribing information. 2011; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022393s006lbl.pdf.
  108. 108.
    Olsen EA, Kim YH, Kuzel TM, Pacheco TR, Foss FM, Parker S, et al. Phase IIB multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous t-cell lymphoma. J Clin Oncol. 2007;25(21):3109–15.PubMedCrossRefGoogle Scholar
  109. 109.
    Munster PN, Rubin EH, Van Belle S, Friedman E, Patterson JK, Van Dyck K, et al. A single supratherapeutic dose of vorinostat does not prolong the QTc interval in patients with advanced cancer. Clin Cancer Res. 2009;15(22):7077–84.PubMedCrossRefGoogle Scholar
  110. 110.
    Food & Drug Administration US. ZOLINZA® prescribing information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021991s002lbl.pdf.
  111. 111.
    Zhang L, Lebwohl D, Masson E, Laird G, Cooper MR, Prince HM. Clinically relevant QTc prolongation is not associated with current dose schedules of LBH589 (panobinostat) [1]. J Clin Oncol. 2008;26(2):332–3.PubMedCrossRefGoogle Scholar
  112. 112.
    Giles F, Fischer T, Cortes J, Garcia-Manero G, Beck J, Ravandi F, et al. A phase I study of intravenous LBH589, a novel cinnamic hydroxamic acid analogue histone deacetylase inhibitor, in patients with refractory hematologic malignancies. Clin Cancer Res. 2006;12(15):4628–35.PubMedCrossRefGoogle Scholar
  113. 113.
    Sharma S, Vogelzang N, Beck J, Patnaik A, Mita M, Dugan M. Phase I pharmacokinetic and pharmacodynamic study of once-weekly iv panobinostat (LBH589). Barcelona: ECCO Poster; 2007. p. 23–7.Google Scholar
  114. 114.
    Wells S, Robinson B, Gagel R, Dralle H, Fagin J, Santoro M, et al. Vandetanib (VAN) in locally advanced or metastatic medullary thyroid cancer (MTC): a randomized, double-blind phase III trial (ZETA). J Clin Oncol. 2010;28(15_suppl):5503.CrossRefGoogle Scholar
  115. 115.
    Food & Drug Administration US. CAPRELSA® (vandetanib) tablets. Prescription information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/022405s001lbl.pdf.
  116. 116.
    Food & Drug Administration US. SUTENT®. Prescription information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021938s13s17s18lbl.pdf.
  117. 117.
    Shah RR, Morganroth J. Update on cardiovascular safety of tyrosine kinase inhibitors: with a special focus on qt interval, left ventricular dysfunction and overall risk/benefit. Drug Saf. 2015;38(8):693–710.PubMedCrossRefGoogle Scholar
  118. 118.
    Kloth JS, Pagani A, Verboom MC, Malovini A, Napolitano C, Kruit WH, et al. Incidence and relevance of QTc-interval prolongation caused by tyrosine kinase inhibitors. Br J Cancer. 2015;112(6):1011–6. Epub 2015/03/06.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Food & Drug Administration US. SPRYCEL® prescribing information. 2011 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021986s009s010lbl.pdf.
  120. 120.
    Abbas R, Chalon S, Leister C, El Gaaloul M, Sonnichsen D. Evaluation of the pharmacokinetics and safety of bosutinib in patients with chronic hepatic impairment and matched healthy subjects. Cancer Chemother Pharmacol. 2013;71(1):123–32. Epub 2012/10/12.PubMedCrossRefGoogle Scholar
  121. 121.
    Arkenau H-T, Sachdev JC, Mita MM, Dziadziuszko R, Lin C-C, Yang JC, et al. Phase (Ph) 1/2a study of TSR-011, a potent inhibitor of ALK and TRK, in advanced solid tumors including crizotinib-resistant ALK positive non-small cell lung cancer. ASCO Meeting Abstracts. 2015;33(15_suppl):8063.Google Scholar
  122. 122.
    Food and Drug Administration. TAGRISSO™ (osimertinib): highlights of prescribing information. 2015.Google Scholar
  123. 123.
    Goldman JW, Soria J-C, Wakelee HA, Camidge DR, Gadgeel SM, Yu HA, et al. Updated results from TIGER-X, a phase I/II open label study of rociletinib in patients (pts) with advanced, recurrent T790M-positive non-small cell lung cancer (NSCLC). ASCO Meeting Abstracts. 2016;34(15_suppl):9045.Google Scholar
  124. 124.
    Spreafico A, Delord JP, De Mattos-Arruda L, Berge Y, Rodon J, Cottura E, et al. A first-in-human phase I, dose-escalation, multicentre study of HSP990 administered orally in adult patients with advanced solid malignancies. Br J Cancer. 2015;112(4):650–9. Epub 2015/01/28.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Sessa C, Shapiro GI, Bhalla KN, Britten C, Jacks KS, Mita M, et al. First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin Cancer Res. 2013;19(13):3671–80.PubMedCrossRefGoogle Scholar
  126. 126.
    Rajan A, Kelly RJ, Trepel JB, Kim YS, Alarcon SV, Kummar S, et al. A phase I study of PF-04929113 (SNX-5422), an orally bioavailable heat shock protein 90 inhibitor, in patients with refractory solid tumor malignancies and lymphomas. Clin Cancer Res. 2011;17(21):6831–9.PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Reddy N, Voorhees PM, Houk BE, Brega N, Hinson JM Jr, Jillela A. Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Clin Lymphoma Myeloma Leuk. 2013;13(4):385–91. Epub 2013/06/15.PubMedCrossRefGoogle Scholar
  128. 128.
    Dennis A, Wang L, Wan X, Ficker E. hERG channel trafficking: novel targets in drug-induced long QT syndrome. Biochem Soc Trans. 2007;35(5):1060–3.PubMedCrossRefGoogle Scholar
  129. 129.
    Daud AI, Ashworth MT, Strosberg J, Goldman JW, Mendelson D, Springett G, et al. Phase I dose-escalation trial of checkpoint kinase 1 inhibitor MK-8776 as monotherapy and in combination with gemcitabine in patients with advanced solid tumors. J Clin Oncol. 2015;33(9):1060–6. Epub 2015/01/22.PubMedCrossRefGoogle Scholar
  130. 130.
    Quinn DI, Baudin E, Demeure MJ, Fassnacht M, Hammer GD, Poondru S, et al. International randomized, double-blind, placebo-controlled, phase 3 study of linsitinib (OSI-906, L) in patients (pts) with locally advanced or metastatic adrenocortical carcinoma (ACC). ASCO Meeting Abstracts. 2014;32(15_suppl):4507.Google Scholar
  131. 131.
    Rademaker-Lakhai JM, Beerepoot LV, Mehra N, Radema SA, Van Maanen R, Vermaat JS, et al. Phase I pharmacokinetic and pharmacodynamic studyof the oral protein kinase C β-inhibitor enzastaurin in combination with gemcitabine and cisplatinin patients with advanced cancer. Clin Cancer Res. 2007;13(15):4474–81.PubMedCrossRefGoogle Scholar
  132. 132.
    Welch PA, Sinha VP, Cleverly AL, Darstein C, Flanagan SD, Musib LC. Safety, tolerability, QTc evaluation, and pharmacokinetics of single and multiple doses of enzastaurin HCl (LY317615), a protein kinase C-β inhibitor, in healthy subjects. J Clin Pharmacol. 2007;47(9):1138–51.PubMedCrossRefGoogle Scholar
  133. 133.
    Kreisl TN, Kim L, Moore K, Duic P, Kotliarova S, Walling J, et al. A phase I trial of enzastaurin in patients with recurrent gliomas. Clin Cancer Res. 2009;15(10):3617–23.PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Kreisl TN, Kotliarova S, Butman JA, Albert PS, Kim L, Musib L, et al. A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro-Oncology. 2010;12(2):181–9. Epub 2010/02/13.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Oh Y, Herbst RS, Burris H, Cleverly A, Musib L, Lahn M, et al. Enzastaurin, an oral serine/threonine kinase inhibitor, as second- or third-line therapy of non-small-cell lung cancer. J Clin Oncol. 2008;26(7):1135–41.PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    Hanrahan EO, Kies MS, Glisson BS, Khuri FR, Feng L, Tran HT, et al. A phase II study of Lonafarnib (SCH66336) in patients with chemorefractory, advanced squamous cell carcinoma of the head and neck. Am J Clin Oncol. 2009;32(3):274–9. Epub 2009/05/13.PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Dowlati A, Robertson K, Cooney M, Petros WP, Stratford M, Jesberger J, et al. A phase I pharmacokinetic and translational study of the novel vascular targeting agent combretastatin A-4 phosphate on a single-dose intravenous schedule in patients with advanced cancer. Cancer Res. 2002;62(12):3408–16.PubMedGoogle Scholar
  138. 138.
    Tabernero J, Dirix L, Schöfski P, Cervantes A, Lopez-Martin JA, Capdevila J, et al. A phase I first-in-human pharmacokinetic and pharmacodynamic study of serdemetan in patients with advanced solid tumors. Clin Cancer Res. 2011;17(19):6313–21.PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Slovacek L, Ansorgova V, Macingova Z, Haman L, Petera J. Tamoxifen-induced QT interval prolongation. J Clin Pharm Ther. 2008;33(4):453–5.PubMedCrossRefGoogle Scholar
  140. 140.
    Garnick MB, Pratt CM, Campion M, Shipley J. The effect of hormonal therapy for prostate cancer on the electrocardiographic QT interval: phase 3 results following treatment with leuprolide and goserelin, alone or with bicalutamide, and the GnRH antagonist abarelix. ASCO Meeting Abstracts. 2004;22(14_suppl):4578.Google Scholar
  141. 141.
    Guglin M, Aljayeh M, Saiyad S, Ali R, Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. Europace. 2009;11(12):1579–86.PubMedCrossRefGoogle Scholar
  142. 142.
    Rowinsky EK, Donehower RC. Drug therapy: paclitaxel (taxol). N Engl J Med. 1995;332(15):1004–14.PubMedCrossRefGoogle Scholar
  143. 143.
    Rowinsky EK, McGuire WP, Guarnieri T, Fisherman JS, Christian MC, Donehower RC. Cardiac disturbances during the administration of taxol. J Clin Oncol. 1991;9(9):1704–12.PubMedCrossRefGoogle Scholar
  144. 144.
    Food & Drug Administration US. ABRAXANE® for injectable suspension (paclitaxel protein-bound particles for injectable suspension) labeling revision. 2009 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021660s022lbl.pdf.
  145. 145.
    Ou SH, Tong WP, Azada M, Siwak-Tapp C, Dy J, Stiber JA. Heart rate decrease during crizotinib treatment and potential correlation to clinical response. Cancer. 2013;119(11):1969–75. Epub 2013/03/19.PubMedCrossRefGoogle Scholar
  146. 146.
    Maitland ML, Kasza KE, Karrison T, Moshier K, Sit L, Black HR, et al. Ambulatory monitoring detects sorafenib-induced blood pressure elevations on the first day of treatment. Clin Cancer Res. 2009;15(19):6250–7.PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    JF Morere, Des Guetz G, J Mourad, BI Lévy, J Breau. Mechanism of bevacizumab-induced arterial hypertension: relation with skin capillary rarefaction in patients treated for metastatic colorectal cancer. ASCO annual meeting; 2007. Abst 35572007.Google Scholar
  148. 148.
    de Boer MP, van der Veldt AAM, Lankheet NA, Wijnstok NJ, van den Eertwegh AJM, Boven E, et al. Sunitinib-induced reduction in skin microvascular density is a reversible phenomenon. Ann Oncol. 2010;21(9):1923–4.PubMedCrossRefGoogle Scholar
  149. 149.
    Steeghs N, Gelderblom H, Roodt JO, Christensen O, Rajagopalan P, Hovens M, et al. Hypertension and rarefaction during treatment with telatinib, a small molecule angiogenesis inhibitor. Clin Cancer Res. 2008;14(11):3470–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Steeghs N, Rabelink TJ, op ‘t Roodt J, Batman E, Cluitmans FHM, Weijl NI, et al. Reversibility of capillary density after discontinuation of bevacizumab treatment. Ann Oncol. 2010;21(5):1100–5.PubMedCrossRefGoogle Scholar
  151. 151.
    van der Veldt AAM, de Boer MP, Boven E, Eringa EC, van den Eertwegh AJM, van Hinsbergh VW, et al. Reduction in skin microvascular density and changes in vessel morphology in patients treated with sunitinib. Anti-Cancer Drugs. 2010;21(4):439–46.  https://doi.org/10.1097/CAD.0b013e3283359c79.CrossRefPubMedGoogle Scholar
  152. 152.
    Demetri GD Van Oosterom AT, Blackstein M, Garrett C, Shah M, Heinrich M, McArthur G, Judson I, Baum CM, Casali PG. Phase 3, multicenter, randomized, double-blind, placebo-controlled trial of SU11248 in patients following failure of imatinib for metastatic GIST. ASCO annual meeting 2005; abst 4000. 2005.Google Scholar
  153. 153.
    Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, et al. Sunitinib in patients with metastatic renal cell carcinoma. J Am Med Assoc. 2006;295(21):2516–24.CrossRefGoogle Scholar
  154. 154.
    Kane RC, Farrell AT, Saber H, Tang S, Williams G, Jee JM, et al. Sorafenib for the treatment of advanced renal cell carcinoma. Clin Cancer Res. 2006;12(24):7271–8.PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Kabbinavar F, Hurwitz HI, Fehrenbacher L, Meropol NJ, Novotny WF, Lieberman G, et al. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol. 2003;21(1):60–5.PubMedCrossRefGoogle Scholar
  156. 156.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350(23):2335–42.PubMedCrossRefGoogle Scholar
  157. 157.
    Czaykowski PM, Moore MJ, Tannock IF. High risk of vascular events in patients with urothelial transitional cell carcinoma treated with cisplatin based chemotherapy. J Urol. 1998;160(6, Part 1):2021–4.PubMedCrossRefGoogle Scholar
  158. 158.
    Duvic M, Talpur R, Ni X, Zhang C, Hazarika P, Kelly C, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109(1):31–9.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Rajkumar SV. Thalidomide therapy and deep venous thrombosis in multiple myeloma. Mayo Clin Proc. 2005;80(12):1549–51.PubMedCrossRefGoogle Scholar
  160. 160.
    Rodeghiero F, Elice F. Thalidomide and thrombosis. Pathophysiol Haemost Thromb. 2003;33(Suppl. 1):15–8.PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Food & Drug Administration US. TARCEVA® prescribing information. 2010 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/021743s14s16lbl.pdf.
  162. 162.
    Qi WX, Min DL, Shen Z, Sun YJ, Lin F, Tang LN, et al. Risk of venous thromboembolic events associated with VEGFR-TKIs: a systematic review and meta-analysis. Int J Cancer. 2013;132(12):2967–74. Epub 2012/12/12.PubMedCrossRefGoogle Scholar
  163. 163.
    Sonpavde G, Je Y, Schutz F, Galsky MD, Paluri R, Rosenberg JE, et al. Venous thromboembolic events with vascular endothelial growth factor receptor tyrosine kinase inhibitors: a systematic review and meta-analysis of randomized clinical trials. Crit Rev Oncol Hematol. 2013;87(1):80–9.PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Palumbo A, Rajkumar SV, Dimopoulos MA, Richardson PG, San Miguel J, Barlogie B, et al. Prevention of thalidomide- and lenalidomide-associated thrombosis in myeloma. Leukemia. 2008;22(2):414–23.CrossRefPubMedGoogle Scholar
  165. 165.
    Deitcher SR, Gomes MPV. The risk of venous thromboembolic disease associated with adjuvant hormone therapy for breast carcinoma: a systematic review. Cancer. 2004;101(3):439–49.PubMedCrossRefPubMedCentralGoogle Scholar
  166. 166.
    Thürlimann B, Keshaviah A, Coates AS, Mouridsen H, Mauriac L, Forbes JF, et al. A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med. 2005;353(26):2747–57.PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Al-Mubarak M, Sacher AG, Ocana A, Vera-Badillo F, Seruga B, Amir E. Fulvestrant for advanced breast cancer: a meta-analysis. Cancer Treat Rev. 2013;39(7):753–8. Epub 2013/06/15.PubMedCrossRefPubMedCentralGoogle Scholar
  168. 168.
    Adams MJ, Lipsitz SR, Colan SD, Tarbell NJ, Treves ST, Diller L, et al. Cardiovascular status in long-term survivors of Hodgkin’s disease treated with chest radiotherapy. J Clin Oncol. 2004;22(15):3139–48.PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Hancock SL, Tucker MA, Hoppe RT. Factors affecting late mortality from heart disease after treatment of Hodgkin’s disease. J Am Med Assoc. 1993;270(16):1949–55.CrossRefGoogle Scholar
  170. 170.
    Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D, et al. Cardiotoxicity of anticancer treatments: epidemiology, detection, and management. CA Cancer J Clin. 2016;66(4):309–25. Epub 2016/02/27.PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the Childhood Cancer Survivor Study cohort. BMJ. 2009;339:b4606.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Mulrooney DA, Yeazel MW, Kawashima T, Mertens AC, Mitby P, Stovall M, et al. Cardiac outcomes in a cohort of adult survivors of childhood and adolescent cancer: retrospective analysis of the childhood cancer survivor study cohort. BMJ. 2010;340(7736):34.Google Scholar
  173. 173.
    Bovelli D, Plataniotis G, Roila F. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO clinical practice guidelines. Ann Oncol. 2010;21(Suppl. 5):v277–v82.PubMedCrossRefPubMedCentralGoogle Scholar
  174. 174.
    Eschenhagen T, Force T, Ewer MS, de Keulenaer GW, Suter TM, Anker SD, et al. Cardiovascular side effects of cancer therapies: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2011;13(1):1–10.PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Soto-Matos A, Szyldergemajn S, Extremera S, Miguel-Lillo B, Alfaro V, Coronado C, et al. Plitidepsin has a safe cardiac profile: a comprehensive analysis. Mar Drugs. 2011;9(6):1007–23.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Cheng H, Force T. Why do kinase inhibitors cause cardiotoxicity and what can be done about it? Prog Cardiovasc Dis. 2010;53(2):114–20.PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Fernandez A, Sanguino A, Peng Z, Ozturk E, Chen J, Crespo A, et al. An anticancer C-Kit kinase inhibitor is reengineered to make it more active and less cardiotoxic. J Clin Invest. 2007;117(12):4044–54.PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. ICH harmonised tripartite guideline: the non-clinical evaluation of the potential for delayed ventricular repolarization (QT interval prolongation) by human pharmaceuticals. S7B. 2005; Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Safety/S7B/Step4/S7B_Guideline.pdf.
  179. 179.
    Cardinale D, Colombo A, Sandri MT, Lamantia G, Colombo N, Civelli M, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114(23):2474–81.PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kalay N, Basar E, Ozdogru I, Er O, Cetinkaya Y, Dogan A, et al. Protective effects of carvedilol against anthracycline-induced cardiomyopathy. J Am Coll Cardiol. 2006;48(11):2258–62.PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev. 2005(1):CD003917.Google Scholar
  182. 182.
    Food & Drug Administration US. ZINECARD® approved labeling. 2005 [cited 2011 14 Nov]; Available from: http://www.accessdata.fda.gov/drugsatfda_docs/label/2005/020212s008lbl.pdf.
  183. 183.
    Negishi K, Negishi T, Hare JL, Haluska BA, Plana JC, Marwick TH. Independent and incremental value of deformation indices for prediction of trastuzumab-induced cardiotoxicity. J Am Soc Echocardiogr. 2013;26(5):493–8. Epub 2013/04/09.PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Zamorano JL, Lancellotti P, Rodriguez Munoz D, Aboyans V, Asteggiano R, Galderisi M, et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur Heart J. 2016;37(36):2768–801. Epub 2016/08/28.PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109(22):2749–54.PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Auner HW, Tinchon C, Linkesch W, Tiran A, Quehenberger F, Link H, et al. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann Hematol. 2003;82(4):218–22.PubMedPubMedCentralGoogle Scholar
  187. 187.
    Cardinale D, Colombo A, Torrisi R, Sandri MT, Civelli M, Salvatici M, et al. Trastuzumab-induced cardiotoxicity: clinical and prognostic implications of troponin I evaluation. J Clin Oncol. 2010;28(25):3910–6. Epub 2010/08/04.PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Sawaya H, Sebag IA, Plana JC, Januzzi JL, Ky B, Tan TC, et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ Cardiovasc Imaging. 2012;5(5):596–603. Epub 2012/06/30.PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Sandri MT, Salvatici M, Cardinale D, Zorzino L, Passerini R, Lentati P, et al. N-terminal pro-B-type natriuretic peptide after high-dose chemotherapy: a marker predictive of cardiac dysfunction? Clin Chem. 2005;51(8):1405–10.PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med. 2002;251(3):228–34.PubMedCrossRefPubMedCentralGoogle Scholar
  191. 191.
    Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J. 1998;136(2):362–3.PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Cardinale D, Colombo A, Lamantia G, Colombo N, Civelli M, De Giacomi G, et al. Anthracycline-induced cardiomyopathy. Clinical relevance and response to pharmacologic therapy. J Am Coll Cardiol. 2010;55(3):213–20.PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Sieswerda E, van Dalen EC, Postma A, Cheuk Daniel KL, Caron Huib N, Kremer Leontien CM. Medical interventions for treating anthracycline-induced symptomatic and asymptomatic cardiotoxicity during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2011;9:CD008011. Available from: http://www.mrw.interscience.wiley.com/cochrane/clsysrev/articles/CD008011/frame.html Google Scholar
  194. 194.
    Lipshultz SE, Lipsitz SR, Sallan SE, Simbre Ii VC, Shaikh SL, Mone SM, et al. Long-term enalapril therapy for left ventricular dysfunction in doxorubicin-treated survivors of childhood cancer. J Clin Oncol. 2002;20(23):4517–22.PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Rudzinski T, Ciesielczyk M, Religa W, Bednarkiewicz Z, Krzeminska-Pakula M. Doxorubicin-induced ventricular arrhythmia treated by implantation of an automatic cardioverter-defibrillator. Europace. 2007;9(5):278–80.PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Fridericia LS. Die Systolendauer im Elektrokardiogramm bei normalen Menschen und bei Herzkranken. Acta Med Scand. 1920;53(1):489–506.CrossRefGoogle Scholar
  197. 197.
    Bazett HC. An analysis of the time-relations of electrocardiograms. Heart. 1920;7:353–70.Google Scholar
  198. 198.
    Bazett HC. An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol. 1997;2(2):177–94.CrossRefGoogle Scholar
  199. 199.
    Sagie A, Larson MG, Goldberg RJ, Bengtson JR, Levy D. An improved method for adjusting the QT interval for heart rate (the Framingham Heart Study). Am J Cardiol. 1992;70(7):797–801.PubMedCrossRefPubMedCentralGoogle Scholar
  200. 200.
    Ohnishi K, Yoshida H, Shigeno K, Nakamura S, Fujisawa S, Naito K, et al. Arsenic trioxide therapy for relapsed or refractory Japanese patients with acute promyelocytic leukemia: need for careful electrocardiogram monitoring. Leukemia. 2002;16(4):617–22.PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    De Bono JS, Kristeleit R, Tolcher A, Fong P, Pacey S, Karavasilis V, et al. Phase I pharmacokinetic and pharmacodynamic study of LAQ824, a hydroxamate histone deacetylase inhibitor with a heat shock protein-90 inhibitory profile, in patients with advanced solid tumors. Clin Cancer Res. 2008;14(20):6663–73.PubMedCrossRefPubMedCentralGoogle Scholar
  202. 202.
    Tamura T, Minami H, Yamada Y, Yamamoto N, Shimoyama T, Murakami H, et al. A phase I dose-escalation study of ZD6474 in Japanese patients with solid, malignant tumors. J Thorac Oncol. 2006;1(9):1002–9.PubMedCrossRefPubMedCentralGoogle Scholar
  203. 203.
    Heymach JV, Johnson BE, Prager D, Csada E, Roubec J, Pešek M, et al. Randomized, placebo-controlled phase II study of vandetanib plus docetaxel in previously treated non-small-cell lung cancer. J Clin Oncol. 2007;25(27):4270–7.PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Hazarika M, Jiang X, Liu Q, Lee SL, Ramchandani R, Garnett C, et al. Tasigna for chronic and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res. 2008;14(17):5325–31.PubMedCrossRefPubMedCentralGoogle Scholar
  205. 205.
    Johnson FM, Agrawal S, Burris H, Rosen L, Dhillon N, Hong D, et al. Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer. 2010;116(6):1582–91.PubMedCrossRefPubMedCentralGoogle Scholar
  206. 206.
    Camidge DR, Gail Eckhardt S, Gore L, O’Bryant CL, Leong S, Basche M, et al. A phase I safety, tolerability, and pharmacokinetic study of enzastaurin combined with capecitabine in patients with advanced solid tumors. Anti-Cancer Drugs. 2008;19(1):77–84. Epub 2007/11/29.PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Talapatra K, Rajesh I, Rajesh B, Selvamani B, Subhashini J. Transient asymptomatic bradycardia in patients on infusional 5-fluorouracil. J Cancer Res Ther. 2007;3(3):169–71.PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Altundaǧ Ö, Çelik I, Kars A. Recurrent asymptomatic bradycardia episodes after cisplatin infusion [1]. Ann Pharmacother. 2001;35(5):641–2.PubMedCrossRefPubMedCentralGoogle Scholar
  209. 209.
    Canobbio L, Fassio T, Gasparini G. Cardiac arrhythmia: possible complication from treatment with cisplatin. Tumori. 1986;72(2):201–4.PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Hashimi LA, Khalyl MF, Salem PA. Supraventricular tachycardia. A probable complication of platinum treatment. Oncology. 1984;41(3):174–5.PubMedCrossRefGoogle Scholar
  211. 211.
    Gridelli C, Cigolari S, Gallo C, Manzione L, Ianniello GP, Frontini L, et al. Activity and toxicity of gemcitabine and gemcitabine+vinorelbine in advanced non-small-cell lung cancer elderly patients: phase II data from the Multicenter Italian Lung Cancer in the Elderly Study (MILES) randomized trial. Lung Cancer. 2001;31(2–3):277–84.CrossRefPubMedGoogle Scholar
  212. 212.
    Santini D, Tonini G, Abbate A, Di Cosimo S, Gravante G, Vincenzi B, et al. Gemcitabine-induced atrial fibrillation: a hitherto unreported manifestation of drug toxicity. Ann Oncol. 2000;11(4):479–81.PubMedCrossRefGoogle Scholar
  213. 213.
    Sauer-Heilborn A, Kath R, Schneider CP, Höffken K. Severe non-haematological toxicity after treatment with gemcitabine. J Cancer Res Clin Oncol. 1999;125(11):637–40.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Zwitter M, Kovac V, Smrdel U, Kocijancic I, Segedin B, Vrankar M. Phase I-II trial of low-dose gemcitabine in prolonged infusion and cisplatin for advanced non-small cell lung cancer. Anti-Cancer Drugs. 2005;16(10):1129–34.PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Lin LL, Picus J, Drebin JA, Linehan DC, Solis J, Strasberg SM, et al. A phase II study of alternating cycles of split course radiation therapy and gemcitabine chemotherapy for inoperable pancreatic or biliary tract carcinoma. Am J Clin Oncol. 2005;28(3):234–41.PubMedCrossRefGoogle Scholar
  216. 216.
    Kilickap S, Akgul E, Aksoy S, Aytemir K, Barista I. Doxorubicin-induced second degree and complete atrioventricular block. Europace. 2005;7(3):227–30.PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Kilickap S, Barista I, Akgul E, Aytemir K, Aksoy S, Tekuzman G. Early and late arrhythmogenic effects of doxorubicin. South Med J. 2007;100(3):262–5.PubMedCrossRefGoogle Scholar
  218. 218.
    Margolin KA, Raynor AA, Hawkins MJ, Atkins MB, Dutcher JP, Fisher RI, et al. Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol. 1989;7(4):486–98.PubMedCrossRefGoogle Scholar
  219. 219.
    Lee RE, Lotze MT, Skibber JM, Tucker E, Bonow RO, Ognibene FP, et al. Cardiorespiratory effects of immunotherapy with interleukin-2. J Clin Oncol. 1989;7(1):7–20.PubMedCrossRefGoogle Scholar
  220. 220.
    Moreau P, Milpied N, Mahé B, Juge-Morineau N, Rapp MJ, Bataille R, et al. Melphalan 220 mg/m2 followed by peripheral blood stem cell transplantation in 27 patients with advanced multiple myeloma. Bone Marrow Transplant. 1999;23(10):1003–6.PubMedCrossRefGoogle Scholar
  221. 221.
    Phillips GL, Meisenberg B, Reece DE, Adams VR, Badros A, Brunner J, et al. Amifostine and autologous hematopoietic stem cell support of escalating-dose melphalan: a phase I study. Biol Blood Marrow Transplant. 2004;10(7):473–83.PubMedCrossRefGoogle Scholar
  222. 222.
    Mileshkin LR, Seymour JF, Wolf MM, Gates P, Januszewicz EH, Joyce P, et al. Cardiovascular toxicity is increased, but manageable, during high-dose chemotherapy and autologous peripheral blood stem cell transplantation for patients aged 60 years and older. Leuk Lymphoma. 2005;46(11):1575–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Lonial S, Kaufman J, Tighiouart M, Nooka A, Langston AA, Heffner LT, et al. A phase I/II trial combining high-dose melphalan and autologous transplant with bortezomib for multiple myeloma: a dose- and schedule-finding study. Clin Cancer Res. 2010;16(20):5079–86.PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Palumbo A, Bringhen S, Caravita T, Merla E, Capparella V, Callea V, et al. Oral melphalan and prednisone chemotherapy plus thalidomide compared with melphalan and prednisone alone in elderly patients with multiple myeloma: randomised controlled trial. Lancet. 2006;367(9513):825–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • I. Brana
    • 1
  • E. Zamora
    • 1
  • G. Oristrell
    • 2
  • J. Tabernero
    • 1
  1. 1.Medical Oncology DepartmentVall d’Hebron University HospitalBarcelonaSpain
  2. 2.Cardiology DepartmentVall d’Hebron University HospitalBarcelonaSpain

Personalised recommendations