Widespread Fatigue Damage and Limit of Validity

  • Sérgio M. O. Tavares
  • Paulo M. S. T. de Castro
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


Multiple site damage (MSD) and multi element damage (MED) decrease the number of cycles up to failure, and concomitantly decrease the interval for inspection.


  1. 1.
    Federal Aviation Administration—FAA, Advisory circular AC No. 120-104: Establishing and implementing limit of validity to prevent widespread fatigue damage (2011)Google Scholar
  2. 2.
    Airworthiness Assurance Working Group—AAWG, Structural fatigue evaluation for aging airplanes (October 1993)Google Scholar
  3. 3.
    Group for Aeronautical Research and Technology in Europe—GARTEUR, Assessment of multiple site damage in highly loaded joints (1997)Google Scholar
  4. 4.
    R.G. Eastin, ‘WFD’-what is it and what’s LOV got to do with it? Int. J. Fatigue 31, 1012–1016 (2009)CrossRefGoogle Scholar
  5. 5.
    Federal Register, 14 CFR Parts 25, 26, 121, and 129 [Docket No. FAA200624281; Amendment Nos. 25132, 265, 121351, 12948], Aging airplane program: widespread fatigue damage, Final Rule, vol. 75, no. 219, 15 November 2010, pp. 69746–69789Google Scholar
  6. 6.
    Y. Jin, P. Cai, Q.B. Tian, C.Y. Liang, D.J. Ke, G. Wang, T. Zhai, An experimental methodology for quantitative characterization of multi-site fatigue crack nucleation in high-strength al alloys. Fatigue Fract. Eng. Mater. Struct. 39, 696–711 (2016)CrossRefGoogle Scholar
  7. 7.
    L.F.M. Silva, J.P.M. Gonçalves, F.M.F. Oliveira, P.M.S.T. de Castro, Multiple-site damage in riveted lap-joints: experimental simulation and finite element prediction. Int. J. Fatigue 22, 319–338 (2000)CrossRefGoogle Scholar
  8. 8.
    R. Galatolo, K.F. Nilsson, An experimental and numerical analysis of residual strength of butt-joints panels with multiple site damage. Eng. Fract. Mech. 68(13), 1437–1461 (2001)CrossRefGoogle Scholar
  9. 9.
    R. Galatolo, R. Lazzeri, Experiments and model predictions for fatigue crack propagation in riveted lap-joints with multiple site damage. Fatigue Fract. Eng. Mater. Struct. 39, 307–319 (2016)CrossRefGoogle Scholar
  10. 10.
    M. Skorupa, T. Machniewicz, A. Skorupa, A. Korbel, Effect of load transfer by friction on the fatigue behaviour of riveted lap joints. Int. J. Fatigue 90, 1–11 (2016)CrossRefGoogle Scholar
  11. 11.
    Federal Register, 14 CFR Parts 25, 121, and 129 Docket No. FAA200624281; Notice No. 0604, Aging aircraft program: widespread fatigue damage, notice of proposed rulemaking (NPRM), vol. 71, no. 74, 18 April 2006, pp. 19928–19951Google Scholar
  12. 12.
    A.W. Hoggard, S.R. Johnson, Understanding the new widespread fatigue damage rule. Boeing Aero Mag. 48(quarter 04), 5–11 (2012)Google Scholar
  13. 13.
    N. Turrel, D. Auriche, Widespread fatigue damage-A300B: compliance with ageing aircraft regulation. Airbus Fast Mag. 51, 17–23 (2013)Google Scholar
  14. 14.
    R.G. Eastin, W. Sippel, The ‘WFD rule’: have we come full circle? in USAF Aircraft Structural Integrity Conference (ASIP 2011) (San Antonio, Texas, USA, 29 Nov–1 Dec 2011)Google Scholar
  15. 15.
    J.E. Dougherty, FAA fatigue strength criteria and practices, in Fatigue Design Procedures: Proceedings of the 4th Symposium of the International Committee on Aeronautical Fatigue, ed. by W.S.E. Gassner (Pergamon Press, 1965)Google Scholar
  16. 16.
    UK Ministry of Transport and Civil Aviation, Civil aircraft accident: Report of the court of inquiry into the accidents to Comet G-ALYP on 10th January 1954 and Comet G-ALYY on 8th April 1954 (1955)Google Scholar
  17. 17.
    UK Department of Trade Accidents Investigation Branch, Boeing 707 321C G-BEBP: report on the accident near Lusaka international airport, Zambia, on 14 May 1977 (1979)Google Scholar
  18. 18.
    National Transportation Safety Board—NTSB, Aircraft accident report—Aloha Airlines, flight 243, Boeing 737-200, N73711, near Maui, Hawaii, 28 April 1988 (1989)Google Scholar
  19. 19.
    P. Safarian, Historical perspective of fatigue requirements, in NTSB Airplane Fuselage Structural Integrity Forum, (Washington, DC, USA, 21–22 Sept 2011)Google Scholar
  20. 20.
    Federal Register, Docket No. FAA-2005-21693; Notice No. 05-11, Damage tolerance data for repairs and alterations, notice of proposed rulemaking (NPRM), vol. 71, no. 77, 21 April 2006Google Scholar
  21. 21.
    Federal Register, 14 CFR Parts 26, 121, and 129 Docket No. FAA200521693; Amendment Nos. 261, 121337, 12944, Damage tolerance data for repairs and alterations, Final Rule, vol. 72, no. 238, 12 Dec 2007Google Scholar
  22. 22.
    S. Hall, M. Vellacot, Safe and economic management of widespread fatigue damage (WFD) using prognostic/diagnostic health and usage monitoring, in The 5th DSTO International Conference on Health and Usage Monitoring (Melbourne, Australia, 20–21 March 2007)Google Scholar
  23. 23.
    Boeing Commercial Airplanes, Boeing Commercial Airplanes comments to FAA Notice of Proposed Rulemaking Aging Aircraft Program: Widespread Fatigue Damage (Docket Number FAA-2006-24281) and Proposed Advisory Circular (AC) 120-YY-Widespread Fatigue Damage on Metallic Structure (2006)Google Scholar
  24. 24.
    Boeing Commercial Airplanes, Statistical summary of commercial jet airplane accidents. Worldwide operations 1959–2015 (2016)Google Scholar
  25. 25.
    Regulation (EU) No. 996/2010 of the European Parliament and of the Council of 20 October 2010, Official Journal of the European Union, 12 Nov 2010, L295/35-L295/50Google Scholar
  26. 26.
    Regulation (EU) No. 376/2014 of the European Parliament and of the Council of 3 April 2014, Official Journal of the European Union, 24 April 2014, L122/18-L122/43Google Scholar
  27. 27.
    H. Petroski, To Engineer Is Human: The Role of Failure in Successful Design (Penguin Random House, 1992)Google Scholar
  28. 28.
    C.F. Tiffany, J.P. Gallagher, C.A. Babish IV, Threats to aircraft structural safety, including a compendium of selected structural accidents incidents, Report ASC-TR-2010-5002, United States Air Force (USAF) (2010)Google Scholar
  29. 29.
    R.J.H. Wanhill, L. Molent, S.A. Barter, E. Amsterdam, Milestone case histories in aircraft structural integrity—update 2015, Report NLR-TP-2015-193 (2015)Google Scholar
  30. 30.
    D. Duarte, B. Marado, J. Nogueira, B. Serrano, V. Infante, F. Moleiro, An overview on how failure analysis contributes to flight safety in the Portuguese Air Force. Eng. Fail. Anal. 65, 86–101 (2016)CrossRefGoogle Scholar
  31. 31.
    B. Serrano, V. Infante, B. Marado, Fatigue life time prediction of PoAF Epsilon TB-30 aircraft-implementation of automatic crack growth based on 3D finite element method. Eng. Fail. Anal. 33, 17–28 (2013)CrossRefGoogle Scholar
  32. 32.
    P.M.S.T. de Castro, P.F.P. de Matos, P.M.G.P. Moreira, L.F.M. da Silva, An overview on fatigue analysis of aeronautical structural details: open hole, single rivet lap-joint, and lap-joint panel. Mater. Sci. Eng. A 468–47, 144–157 (2007)CrossRefGoogle Scholar
  33. 33.
    D.F.O. Braga, S.M.O. Tavares, L.F.M. da Silva, P.M.G.P. Moreira, P.M.S.T. de Castro, Advanced design for lightweight structures: review and prospects. Prog. Aerosp. Sci. 69, 29–39 (2014)CrossRefGoogle Scholar
  34. 34.
    P.M.S.T. de Castro, Virtual issue-VI Fatigue and fracture of aerostructures (Fatigue Fract. Eng. Mater, Struct, 2016)Google Scholar
  35. 35.
    T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 1st edn. (CRC Press, 1991)Google Scholar
  36. 36.
    H. Tada, P.C. Paris, G.R. Irwin, Stress Analysis of Cracks Handbook, 3rd edn. (ASME, 2000)Google Scholar
  37. 37.
    E.S. Folias, On the theory of fracture of curved sheets. Eng. Fract. Mech. 2(2), 151–164 (1970)CrossRefGoogle Scholar
  38. 38.
    A. Zahoor, Ductile fracture handbook, Report NP-6301-D, EPRI (1990)Google Scholar
  39. 39.
    S.M.O. Tavares, P.M.S.T. de Castro, Stress intensity factor calibration for a longitudinal crack in a fuselage barrel and the bulging effect influence. Eng. Fract. Mech. 78(17), 2907–2918 (2011)CrossRefGoogle Scholar
  40. 40.
    P.M.G.P. Moreira, S.D. Pastrama, P.M.S.T. de Castro, Three-dimensional stress intensity factor calibration for a stiffened cracked plate. Eng. Fract. Mech. 76(14), 2298–2308 (2009)CrossRefGoogle Scholar
  41. 41.
    H. Richard, Bruchvorhersagen bei überlagerter normal-und schubbeanspruchung von rissen. VDI Forschungsheft 631, 1–60 (1985)Google Scholar
  42. 42.
    M. Hermosilla, Stress intensity factor calculation using conventional and extended finite element method, Master’s thesis (Faculdade de Engenharia da Universidade do Porto, 2016)Google Scholar
  43. 43.
    S. Häusler, P. Baiz, S.M.O. Tavares, A. Brot, P. Horst, M. Aliabadi, P.M.S.T. de Castro, Y. Peleg-Wolfin, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part I: Model overview. Struct. Durab. Health Monit. 7(3), 163–190 (2011)Google Scholar
  44. 44.
    S.M.O. Tavares, S. Häusler, P. Baiz, A. Brot, P. Augustin, P.M.S.T. de Castro, P. Horst, M. Aliabadi, Crack growth simulation in integrally stiffened structures including residual stress effects from manufacturing. Part II: Modelling and experiments comparison. Struct. Durab. Health Monit. 7(3), 191–210 (2011)Google Scholar
  45. 45.
    A. Lanciotti, L. Lazzeri, C. Polese, C. Rodopoulos, P. Moreira, A. Brot, G. Wang, L. Velterop, G. Biallas, J. Klement, Fatigue crack growth in stiffened panels, integrally machined or welded (LBW or FSW): the DATON project common testing program. Struct. Durab. Health Monit. 7(3), 211–230 (2011)Google Scholar
  46. 46.
    J.W. Hutchinson, Life as a mechanician: 1956-; Timoshenko medal acceptance speech, 2002 IMECE, New Orleans, LA, USA (ASME Applied Mechanics Division newsletter, 2003), pp. 1 and 3–4Google Scholar
  47. 47.
    H. Akes, L. Susmel, Understanding cracked materials: is linear elastic fracture mechanics obsolete? Fatigue Fract. Eng. Mater. Struct. 38, 154–160 (2015)CrossRefGoogle Scholar
  48. 48.
    P. Camanho, G. Erçin, G. Catalanotti, S. Mahdi, P. Linde, A finite fracture mechanics model for the prediction of the open-hole strength of composite laminates. Compos. Part A: Appl. Sci. Manuf. 43(8), 1219–1225 (2012)CrossRefGoogle Scholar
  49. 49.
    P. Weißgraeber, D. Leguillon, W. Becker, A review of finite fracture mechanics: crack initiation at singular and non-singular stress raisers. Arch. Appl. Mech. 86, 375–401 (2016)CrossRefGoogle Scholar
  50. 50.
    P.M.G.P. Moreira, L.F.M. da Silva, P.M.S.T. de Castro, Structural Connections for Lightweight Metallic Structures (Springer-Verlag, 2012)Google Scholar
  51. 51.
    J. Lu, N. Huber, N. Kashaev, Influence of the geometry on the fatigue performance of crenellated fuselage panels. Ciência Tecnolog. Mater. 27(2), 100–107 (2015)CrossRefGoogle Scholar
  52. 52.
    J. Lu, N. Kashaev, N. Huber, Crenellation patterns for fatigue crack retardation in fuselage panels optimized via genetic algorithm. Proced. Eng. 114, 248–254 (2015)CrossRefGoogle Scholar
  53. 53.
    J. Lu, N. Kashaev, N. Huber, Optimization of crenellation patterns for fatigue crack retardation via genetic algorithm and the reduction in computational cost. Eng. Fail. Anal. 63, 21–30 (2016)CrossRefGoogle Scholar
  54. 54.
    M.V. Uz, M. Koçak, F. Lemaitre, J.C. Ehrström, S. Kempa, F. Bron, Improvement of damage tolerance of laser beam welded stiffened panels for airframes via local engineering. Int. J. Fatigue 31(5), 916–926 (2009)CrossRefGoogle Scholar
  55. 55.
    P. Edwards, M. Ramulu, Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38, 1228–1236 (2015)CrossRefGoogle Scholar
  56. 56.
    A. Concilio, I. Dimino, L. Lecce, R. Pecora, et al., Morphing Wing Technologies: Large Commercial Aircraft and Civil Helicopters (Butterworth-Heinemann, 2017)Google Scholar
  57. 57.
    P.C. Wölcken, M. Papadopoulos, Smart Intelligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference (Springer, 2015)Google Scholar
  58. 58.
    S.M.O. Tavares, S.J. Moreira, P.M.S.T. de Castro, P.V. Gamboa, Morphing aeronautical structures: a review focused on UAVs and durability assessment, in 2017 IEEE 4th International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD) (Kyiv (IEEE, Ukraine, 2017), pp. 49–52Google Scholar
  59. 59.
    S. Barbarino, R. Pecora, L. Lecce, A. Concilio, S. Ameduri, L. De Rosa, Airfoil structural morphing based on S.M.A. actuator series: numerical and experimental studies. J. Intell. Mater. Syst. Struct. 22, 987–1004 (2011)Google Scholar
  60. 60.
    G. McKnight, R. Doty, A. Keefe, G. Herrera, C. Henry, Segmented reinforcement variable stiffness materials for reconfigurable surfaces. J. Intell. Mater. Syst. Struct. 21, 1783–1793 (2010)CrossRefGoogle Scholar
  61. 61.
    E.A. Bubert, B.K.S. Woods, K. Lee, C.S. Kothera, N.M. Wereley, Design and fabrication of a passive 1D morphing aircraft skin. J. Intell. Mater. Syst. Struct. 21, 1699–1717 (2010)CrossRefGoogle Scholar
  62. 62.
    R.D. Vocke, C.S. Kothera, B.K.S. Woods, N.M. Wereley, Development and testing of a span-extending morphing wing. J. Intell. Mater. Syst. Struct. 22, 879–890 (2011)CrossRefGoogle Scholar
  63. 63.
    S.J. Moreira, S.M.O. Tavares, P.M.S.T. Castro, Morphing structures and fatigue: the case of an unmanned aerial vehicle wing leading edge. Fatigue Fract. Eng. Mater. Struct. 40(10), 1601–1611 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Sérgio M. O. Tavares
    • 1
  • Paulo M. S. T. de Castro
    • 1
  1. 1.Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations