Sex Differences and Role of Estradiol in Hypoglycemia-Associated Counter-Regulation
Abstract
Vital nerve cell functions, including maintenance of transmembrane voltage and information transfer, occur at high energy expense. Inadequate provision of the obligate metabolic fuel glucose exposes neurons to risk of dysfunction or injury. Clinical hypoglycemia rarely occurs in nondiabetic individuals but is an unfortunate regular occurrence in patients with type 1 or advanced insulin-treated type 2 diabetes mellitus. Requisite strict glycemic control, involving treatment with insulin, sulfonylureas, or glinides, can cause frequent episodes of iatrogenic hypoglycemia due to defective counter-regulation, including reduced glycemic thresholds and diminished magnitude of motor responses. Multiple components of the body’s far-reaching energy balance regulatory network, including the hindbrain dorsal vagal complex, provide dynamic readout of cellular energetic disequilibrium, signals that are utilized by the hypothalamus to shape counterregulatory autonomic, neuroendocrine, and behavioral outflow toward restoration of glucostasis. The ovarian steroid hormone 17β-estradiol acts on central substrates to preserve nerve cell energy stability brain-wide, thereby providing neuroprotection against bio-energetic insults such as neurodegenerative diseases and acute brain ischemia. The current review highlights recent evidence implicating estrogen in gluco-regulation in females by control of hindbrain metabolic sensor screening and signaling of hypoglycemia-associated neuro-energetic instability. It is anticipated that new understanding of the mechanistic basis of how estradiol influences metabolic sensory input from this critical brain locus to discrete downstream regulatory network substrates will likely reveal viable new molecular targets for therapeutic simulation of hormone actions that promote positive neuronal metabolic state during acute and recurring hypoglycemia.
Abbreviations
- 4CIN
Alpha-cyano-4-hydroxycinnamate
- 6-OHDA
6-Hydroxydopamine
- AICAR
5-Aminoimidazole-4-carboxamide-riboside
- AMPK
Adenosine 5′-monophosphate-activated protein kinase
- ANLSH
Astrocyte-neuron lactate shuttle hypothesis
- ARH
Arcuate hypothalamic nucleus
- CA
Catecholamine
- CaMMKβ
Ca++/calmodulin-dependent protein kinase-beta
- CRH
Corticotropin-releasing hormone
- CV4
Caudal fourth ventricle
- DAB
1,4-Dideoxy-1,4-imino-d-arabinitol
- DBH
Dopamine-beta-hydroxylase
- DMH
Dorsomedial hypothalamic nucleus
- DVC
Dorsal vagal complex
- ERα
Estrogen receptor-alpha
- ERβ
Estrogen receptor-beta
- FD
Food deprivation
- GABA
γ-Aminobutyric acid
- GAD65/67
Glutamate decarboxylase65/67
- GCK
Glucokinase
- GE
Glucose-excited
- GI
Glucose-inhibited
- GnRH
Gonadotropin-releasing hormone
- GP
Glycogen phosphorylase
- GS
Glycogen synthase
- HAAF
Hypoglycemia-associated autonomic failure
- icv
Intracerebroventricular
- ir
Immunoreactivity
- KATP
ATP-dependent potassium channel
- LH
Luteinizing hormone
- LHA
Lateral hypothalamic area
- NE
Norepinephrine
- nNOS
Neuronal nitric oxide synthase
- NPY
Neuropeptide Y
- OGDH
Alpha ketoglutarate dehydrogenase
- ORDX
Orchidectomy
- OVX
Ovariectomy
- pAMPK
PhosphoAMPK
- PFKL
Phosphofructokinase
- PHTPP
4-[2-Phenyl-5,7-bis(trifluoromethyl)pyrazolo[1,5-a]pyrimidin-3-yl]phenol
- PVH
Paraventricular hypothalamic nucleus
- RIIH
Recurring insulin-induced hypoglycemia
- rPO
Rostral preoptic area
- NTS
Nucleus of the solitary tract
- T1DM
Type 1 diabetes mellitus
- T2DM
Type 2 diabetes mellitus
- TCA
Tricarboxylic acid cycle
- VMH
Ventromedial hypothalamic nucleus
References
- Adachi, A., Kobashi, M., & Funahashi, M. (1995). Glucose-responsive neurons in the brainstem. Obesity Research, 3, 35S–740S.CrossRefGoogle Scholar
- Adler, B. A., Johnson, M. D., Lynch, C. O., & Crowley, W. R. (1983). Evidence that norepinephrine and epinephrine systems mediate the stimulatory effects of ovarian hormones on luteinizing hormone and luteinizing hormone-releasing hormone. Endocrinology, 113, 1431–1438.CrossRefPubMedGoogle Scholar
- Alenazi, F. S. H., Ibrahim, B. A., & Briski, K. P. (2014). Estradiol regulates effects of hindbrain AICAR administration on hypothalamic AMPK activity and metabolic neurotransmitter mRNA and protein expression. Journal of Neuroscience Research, 93, 651–659.CrossRefPubMedGoogle Scholar
- Alenazi, F. S. H., Ibrahim, B. A., Alhamami, H., Shakya, M., & Briski, K. P. (2016). Role of estradiol in intrinsic hindbrain AMPK regulation of hypothalamic AMPK, metabolic neuropeptide, and norepinephrine activity and food intake in the female rat. Neuroscience, 314, 35–46.CrossRefPubMedGoogle Scholar
- Amiel, S. A., Simonsen, D. C., & Tamborlane, W. V. (1987). Rate of glucose fall does not affect counterregulatory hormone response to hypoglycemia in normal and diabetic humans. Diabetes, 36, 518–522.CrossRefPubMedGoogle Scholar
- Amiel, S. A., Maran, A., Powrie, J. K., Umpleby, A. M., & Macdonald, I. A. (1993). Gender differences in counterregulation to hypoglycaemia. Diabetologia, 36, 460–464.CrossRefPubMedGoogle Scholar
- Andrew, S. F., Dinh, T. T., & Ritter, S. (2007). Localized glucoprivation of hindbrain sites elicits corticosterone and glucagon secretion. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 292, R1792–R1798.CrossRefPubMedGoogle Scholar
- Asarian, L., & Geary, N. (2002). Cyclic estradiol treatment normalizes body weight and restores physiological patterns of spontaneous feeding and sexual receptivity in ovariectomized rats. Hormones and Behavior, 42, 461–471.CrossRefPubMedGoogle Scholar
- Asarian, L., & Geary, N. (2006). Modulation of appetite by gonadal steroid hormones. Philosophical Transactions of the Royal Society B, 361, 1251–1263.CrossRefGoogle Scholar
- Azcoitia, I., Sierra, A., & Garcia-Segura, L. M. (1999). Localization of estrogen receptor beta-immunoreactivity in astrocytes of the adult rat brain. Glia, 26, 260–267.CrossRefPubMedGoogle Scholar
- Balfour, R. H., Hansen, A. M. K., & Trapp, S. (2006). Neuronal responses to transient hypoglycaemia in the dorsal vagal complex of the rat brainstem. The Journal of Physiology, 570, 469–484.CrossRefPubMedGoogle Scholar
- Barros, L. F. (2013). Metabolic signaling by lactate in the brain. Trends in Neurosciences, 36, 396–404.CrossRefPubMedGoogle Scholar
- Bolli, C. G., De Feo, P., & Cosmo, S. (1984). A reliable and reproducible test for adequate glucose counterregulation in type 1 diabetes. Diabetes, 33, 732–737.CrossRefPubMedGoogle Scholar
- Briski, K. P., & Nedungadi, T. P. (2009). Adaptation of feeding and counter-regulatory hormone responses to intermediate insulin-induced hypoglycaemia in the ovariectomised female rat: Effects of oestradiol. Journal of Neuroendocrinology, 21, 578–585.CrossRefPubMedGoogle Scholar
- Briski, K. P., & Patil, G. D. (2005). Induction of Fos immunoreactivity labeling in forebrain metabolic loci by caudal fourth ventricular administration of the monocarboxylate transporter inhibitor, α-cyano-4-hydroxycinnamic acid. Neuroendocrinology, 82, 49–57.CrossRefPubMedGoogle Scholar
- Briski, K. P., & Shrestha, P. K. (2016). Hindbrain estrogen receptor-beta antagonism normalizes reproductive and counter-regulatory hormone secretion in hypoglycemic steroid-primed ovariectomized female rats. Neuroscience, 331, 62–71.CrossRefPubMedPubMedCentralGoogle Scholar
- Briski, K. P., & Sylvester, P. W. (1998). Effects of the glucose antimetabolite, 2-deoxy-D-glucose (2-DG), on the LH surge and Fos expression by preoptic GnRH neurons in ovariectomized, steroid-primed rats. Journal of Neuroendocrinology, 10, 769–776.CrossRefPubMedGoogle Scholar
- Briski, K. P., Koshy Cherian, A., Genabai, N. K., & Vavaiya, K. V. (2009). In situ coexpression of glucose and monocarboxylate transporter mRNAs in metabolic-sensitive dorsal vagal complex catecholaminergic neurons: Transcriptional reactivity to insulin-induced hypoglycemia and caudal hindbrain glucose or lactate repletion during insulin-induced hypoglycemia. Neuroscience, 164, 1152–1160.CrossRefPubMedGoogle Scholar
- Briski, K. P., Ibrahim, B. A., & Tamrakar, P. (2014). Energy metabolism and hindbrain AMPK: Regulation by estradiol. Hormone Molecular Biology and Clinical Investigation, 17, 129–136.CrossRefPubMedGoogle Scholar
- Bröer, S., Rahman, B., Pellegri, G., Pellerin, L., Martin, J. L., Verleysdonk, S., Hamprecht, B., & Magistretti, P. J. (1997). Comparison of lactate transport in astroglial cells and monocarboxylate transporter 1 (MCT 1) expressing Xenopus laevis oocytes. Expression of two different monocarboxylate transporters in astroglial cells and neurons. The Journal of Biological Chemistry, 272, 30096–30102.CrossRefPubMedGoogle Scholar
- Brown, A. M. (2004). Brain glycogen re-awakened. Journal of Neurochemistry, 89, 537–552.CrossRefPubMedGoogle Scholar
- Butcher, R. L., Collins, W. E., & Fugo, N. W. (1974). Plasma concentrations of LH, FSH, progesterone, and estradiol-17beta throughout the 4-day estrous cycle of the rat. Endocrinology, 94, 1704–1708.CrossRefPubMedGoogle Scholar
- Chan, O., Zhu, W., Ding, Y., McCrimmon, R., & Sherwin, R. (2006). Blockade of GABAA receptors in the ventromedial hypothalamus further stimulates glucagon and sympathoadrenal but not the hypothalamo-pituitary-adrenal response to hypoglycemia. Diabetes, 55, 1080–1087.CrossRefPubMedGoogle Scholar
- Chan, O., Lawson, M., Zhu, W., Beverly, J. L., & Sherwin, R. (2007). ATP-sensitive K(+) channels regulate the release of GABA in the ventromedial hypothalamus during hypoglycemia. Diabetes, 56, 1120–1126.CrossRefPubMedGoogle Scholar
- Chen, M. D., O’Byrne, K. T., Chiappini, S. E., Hotchkiss, J., & Knobil, E. (1992). Hypoglycemic ‘stress’ and gonadotropin-releasing hormone pulse generator activity in the rhesus monkey: Role of the ovary. Neuroendocrinology, 56, 666–673.CrossRefPubMedGoogle Scholar
- Chen, J. Q., Brown, T. R., & Russo, J. (2009). Regulation of energy metabolism pathways by estrogens and estrogenic chemicals and potential implications in obesity associated with increased exposure to endocrine disruptors. Biochimica et Biophysica Acta, 1793, 1128–1143.CrossRefPubMedPubMedCentralGoogle Scholar
- Cherian, A. K., & Briski, K. P. (2011). Quantitative RT PCR and immunoblot analyses reveal acclimated A2 noradrenergic neuron substrate fuel transporter, glucokinase, phospho-AMPK, and dopamine-beta-hydroxylase responses to hypoglycemia. Journal of Neuroscience Research, 89, 1114–1124.CrossRefPubMedGoogle Scholar
- Cherian, A. K., & Briski, K. P. (2012). A2 noradrenergic nerve cell metabolic transducer and nutrient transporter adaptation to hypoglycemia: Impact of estrogen. Journal of Neuroscience Research, 90, 1347–1358.CrossRefPubMedGoogle Scholar
- Clarke, I. J., Horton, R. J. E., & Doughton, B. W. (1990). Investigation of the mechanism by which insulin-induced hypoglycemia decreases luteinizing hormone secretion in ovariectomized ewes. Endocrinology, 127, 1470–1476.CrossRefPubMedGoogle Scholar
- Cryer, P. E. (1993). Hypoglycemia begets hypoglycemia in IDDM. Diabetes, 42, 1691–1693.Google Scholar
- Cryer, P. E. (2001). Hypoglycemia-associated autonomic failure in diabetes. American Journal of Physiology – Endocrinology and Metabolism, 281, E1115–E11121.CrossRefPubMedGoogle Scholar
- Cryer, P. E. (2005). Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes, 54, 3592–3601.CrossRefPubMedGoogle Scholar
- Davis, S. N., Shavers, C., & Costa, F. (2000). Gender-related differences in counterregulatory responses to antecedent hypoglycemia in normal humans. The Journal of Clinical Endocrinology and Metabolism, 85, 2148–2157.PubMedGoogle Scholar
- de Galan, B. E., Schouwenberg, B. J., Tack, C. J., & Smits, P. (2006). Pathophysiology and management of recurrent hypoglycaemia and hypoglycaemia unawareness in diabetes. The Netherlands Journal of Medicine, 64, 269–279.Google Scholar
- Debernardi, R., Pierre, K., Lengacher, S., Magistretti, P. J., & Pellerin, L. (2003). Cell-specific expression pattern of monocarboxylate transporters in astrocytes and neurons observed in different mouse brain cortical cell cultures. Journal of Neuroscience Research, 73, 141–155.CrossRefPubMedGoogle Scholar
- Fanelli, C., Pampanelli, S., Epifano, L., Rambotti, A. M., Di Vincenzo, A., Modarelli, F., Ciofetta, M., Lepore, M., Annibale, B., & Torlone, E. (1994). Relative roles of insulin, and hypoglycemia on induction of neuroendocrine responses to, symptoms of, and deterioration of cognitive function in hypoglycemia in male and female humans. Diabetologia, 37, 797–807.CrossRefPubMedGoogle Scholar
- Giles, E. D., Jackman, M. R., Johnson, G. C., Schedin, P. J., & Houser, J. L. (2010). Effect of the estrous cycle and surgical ovariectomy on energy balance, fuel utilization, and physical activity in lean and obese female rats. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 299, R1634–R1642.CrossRefPubMedPubMedCentralGoogle Scholar
- Goodman, R. L. (1978). A quantitative analysis of the physiological role of estradiol and progesterone in the control of tonic and surge secretion of luteinizing hormone in the rat. Endocrinology, 102, 142–150.CrossRefPubMedGoogle Scholar
- Gruetter, R. (2003). Glycogen: The forgotten cerebral energy store. Journal of Neuroscience Research, 74, 179–183.CrossRefPubMedGoogle Scholar
- Gujar, A. D., Ibrahim, B. A., Tamrakar, P., & Briski, K. P. (2014). Hindbrain nutrient status regulates hypothalamic AMPK activity and hypothalamic metabolic neurotransmitter mRNA and protein responses to hypoglycemia. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 306, R457–R469.CrossRefPubMedGoogle Scholar
- Han, S. M., Namkoong, C., Jang, P. G., Park, I. S., Hong, S. W., Katakami, H., Chun, S., Kim, S. W., Park, J. Y., Lee, K. U., & Kim, M. S. (2005). Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia, 48, 2170–2178.CrossRefPubMedGoogle Scholar
- Hardie, D. G. (2003). Minireview: The AMP-activated protein kinase cascade: The key sensor of cellular energy status. Endocrinology, 144, 5179–5183.CrossRefPubMedGoogle Scholar
- Harik, S. I., Busto, R., & Martinez, E. (1982). Norepinephrine regulation of cerebral glycogen utilization during seizures and ischemia. The Journal of Neuroscience, 2, 409–414.PubMedGoogle Scholar
- Herbison, A. E., & Dyer, D. G. (1991). Effect of luteinizing hormone secretion of GABA receptor modulation in medial preoptic area at the time of proestrous luteinizing hormone surge. Neuroendocrinology, 53, 317–320.Google Scholar
- Herzog, R. I., Chan, O., Yu, S., Dziura, J., McNay, E. C., & Sherwin, R. S. (2008). Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology, 149, 1499–1504.CrossRefPubMedPubMedCentralGoogle Scholar
- Hopkins, D. (2004). Exercise-induced and other daytime hypoglycemic events in patients with diabetes: Prevention and treatment. Diabetes Research and Clinical Practice, 65(Suppl 1), S35–S39.CrossRefPubMedGoogle Scholar
- Hösli, E., Rühl, W., & Hösli, L. (2000). Histochemical and electrophysiological evidence for estrogen receptors on cultured astrocytes: Colocalization with cholinergic receptors. International Journal of Developmental Neuroscience, 18, 101–111.CrossRefPubMedGoogle Scholar
- Ibrahim, B. A., & Briski, K. P. (2014). Role of dorsal vagal complex A2 noradrenergic neurons in hindbrain glucoprivic inhibition of the luteinizing hormone surge in the steroid-primed ovariectomized female rat: Effects of 5-thioglucose on A2 functional biomarker and AMPK activity. Neuroscience, 269, 199–214.CrossRefPubMedPubMedCentralGoogle Scholar
- Ibrahim, B. A., & Briski, K. P. (2015). Deferred feeding and body weight responses to short-term interruption of fuel acquisition: Impact of estradiol. Hormone and Metabolic Research, 47, 611–621.PubMedGoogle Scholar
- Ibrahim, B., Tamrakar, P., Gujar, A., Koshy Cherian, A., & Brisk, K. P. (2013). Caudal fourth ventricular administration of the AMPK activator 5-aminoimiazole-4-carboxamide-riboside regulates glucose and counterregulatory hormone profiles, dorsal vagal complex metabolosensory neuron function, and hypothalamic Fos expression. Journal of Neuroscience Research, 91, 1226–1238.CrossRefPubMedGoogle Scholar
- Irwin, R. W., Yao, J., Hamilton, R. T., Cadenas, E., Brinton, R. D., & Nilsen, J. (2008). Progesterone and estrogen regulate oxidative metabolism in brain mitochondria. Endocrinology, 149, 3167–3175.Google Scholar
- Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism. Cell Metabolism, 1, 15–25.CrossRefPubMedGoogle Scholar
- King, A. B., & Clark, D. (2015). Omitting late-night eating may cause hypoglycemia in “well controlled” basal insulin-treated type 2 diabetes. Endocrine Practice, 21, 280–285.CrossRefPubMedGoogle Scholar
- Kostanyan, A., & Nazaryan, K. (1992). Rat brain glycolysis regulation by estradiol-17 beta. Biochimica et Biophysica Acta, 1133, 301–306.CrossRefPubMedGoogle Scholar
- Laming, P. R., Kimelberg, H., Robinson, S., Salm, A., Hawrylak, N., Müller, C., Roots, B., & Ng, K. (2000). Neuronal-glial interactions and behaviour. Neuroscience and Biobehavioral Reviews, 24, 295–340.Google Scholar
- Li, A. J., Wang, Q., & Ritter, S. (2006). Differential responsiveness of dopamine-beta-hydroxylase gene expression to glucoprivation in different catecholamine cell groups. Endocrinology, 147, 3428–3434.Google Scholar
- Mitrakou, A., Mokan, M., & Ryan, C. (1993). Influence of plasma glucose rate of decrease on hierarchy of responses to hypoglycemia. Journal of Clinical Endocrinology and Metabolism, 76, 462–465.PubMedGoogle Scholar
- Mizuno, Y., & Oomura, Y. (1984). Glucose responding neurons in the nucleus tractus solitarius of the rat: In vitro study. Brain Research, 307, 109–116.CrossRefPubMedGoogle Scholar
- Mufson, E. J., Cai, W. J., Jaffar, S., Chen, E., Stebbins, G., Sendera, T., & Kordower, J. H. (1999). Estrogen receptor immunoreactivity within subregions of the rat forebrain: Neuronal distribution and association with perikarya containing choline acetyltransferase. Brain Research, 849, 253–274.CrossRefPubMedGoogle Scholar
- Nedungadi, T. P., & Briski, K. P. (2012). Site-specific effects of intracranial estradiol administration on recurrent insulin-induced hypoglycemia in ovariectomized female rats. Neuroendocrinology, 96, 311–323.CrossRefPubMedGoogle Scholar
- Nedungadi, T. P., Golemen, W. L., Paranjape, S. A., Kale, A. Y., & Briski, K. P. (2006). Effects of estradiol on glycemic and CNS neuronal activational responses to recurrent insulin-in-duced hypoglycemia in the ovariectomized female rat. Neuroendocrinology, 84, 235–243.CrossRefPubMedGoogle Scholar
- Nehlig, A., Wittendorp-Rechenmann, E., & Lam, C. D. (2004). Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: High-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. Journal of Cerebral Blood Flow and Metabolism, 24, 1004–1014.CrossRefPubMedGoogle Scholar
- Nilsen, J., Irwin, R. W., Gallaher, T. K., & Brinton, R. D. (2007). Estradiol in vivo regulation of brain mitochondrial proteome. The Journal of Neuroscience, 27, 14069–14077.Google Scholar
- Obel, L. F., Müller, M. S., Walls, A. B., Sickmann, H. M., Bak, L. K., Waagepetarsen, H. S., & Schousboe, A. (2012). Brain glycogen – new perspectives on its metabolic function and regulation at the subcellular level. Frontiers in Neuroenergetics, 4, 15–28.CrossRefGoogle Scholar
- Ohkura, S., Tanaka, T., Nagatani, S., Bucholtz, D. C., Tsukamura, H., Maeda, K., & Foster, D. L. (2000). Central, but not peripheral, glucose-sensing mechanisms mediate glucoprivic suppression of pulsatile luteinizing hormone secretion in the sheep. Endocrinology, 141, 4472–4480.CrossRefPubMedGoogle Scholar
- Osterlund, M., Kuiper, G. G., Gustafsson, J. A., & Hurd, Y. L. (1998). Differential distribution and regulation of estrogen receptor-alpha and -beta mRNA within the female rat brain. Brain Research Molecular Brain Research, 54, 175–180.CrossRefPubMedGoogle Scholar
- Oz, G., Kumar, A., Rao, J. P., Kodl, C. T., Chow, L., Eberly, L. E., & Seaquist, E. R. (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes, 58, 1978–1985.CrossRefPubMedPubMedCentralGoogle Scholar
- Paranpape, S. A., & Briski, K. P. (2005). Recurrent insulin-induced hypoglycemia causes site-specific patterns of habituation or amplification of CNS neuronal genomic activation. Neuroscience, 130, 957–970.CrossRefGoogle Scholar
- Patil, G. D., & Briski, K. P. (2005). Lactate is a critical ‘sensed’ variable in caudal hindbrain monitoring of CNS metabolic stasis. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 289, R1777–R1786.CrossRefPubMedGoogle Scholar
- Pellerin, L. (2003). Lactate as a pivotal element in neuron-glia metabolic cooperation. Neurochemistry International, 43, 331–338.CrossRefPubMedGoogle Scholar
- Pellerin, L., & Magistretti P. J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: A mechanism coupling neuronal activity to glucose utilization. Proceedings of the National Academy of Sciences of the United States of America, 91, 10625–10629.Google Scholar
- Pellerin, L., Stolz, M., Sorg, O., Martin, J. L., Deschepper, C. F., & Magistretti, P. J. (1997). Regulation of energy metabolism by neurotransmitters in astrocytes in primary culture and in an immortalized cell line. Glia, 21, 74–83.CrossRefPubMedGoogle Scholar
- Pierre, K., Pellerin, L., Debernardi, R., Riederer, B. M., & Magistretti, P. J. (2000). Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience, 100, 617–627.CrossRefPubMedGoogle Scholar
- Raju, B., McGregor, V. P., & Cryer, P. E. (2003). Cortisol elevations comparable to those that occur during hypoglycemia do not cause hypoglycemia-associated autonomic failure. Diabetes, 52, 2083–2089.CrossRefPubMedGoogle Scholar
- Rinaman, L. (2011). Hindbrain noradrenergic A2 neurons: Diverse roles in autonomic, endocrine, cognitive, and behavioral functions. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 300, R222–R235.CrossRefPubMedGoogle Scholar
- Ronnett, G. V., Ramamurthy, S., Kleman, A. M., Landree, L. E., & Aja, S. (2009). AMPK in the brain: Its roles in energy balance and neuroprotection. Journal of Neurochemistry, 109, 17–23.CrossRefPubMedPubMedCentralGoogle Scholar
- Routh, V. H., Hao, L., Santiago, A. M., Sheng, Z., & Zhou, C. (2014). Hypothalamic glucose sensing: Making ends meet. Frontiers in Systems Neuroscience, 8, 236. https://doi.org/10.3389/fnsys.2014.00236.CrossRefPubMedPubMedCentralGoogle Scholar
- Sanders, N. M., Figlewicz, D. P., Taborsky, G. J., Jr., Wilkinson, C. W., Daumen, W., & Levin, B. E. (2006). Feeding and neuroendocrine responses after recurrent insulin-induced hypoglycemia. Physiology & Behavior, 87, 700–706.CrossRefGoogle Scholar
- Santiago, J. V., Clarke, W. L., & Shah, S. D. (1980). Epinephrine, norepinephrine, glucagon and growth hormone release in association with physiologic decrements in the plasma glucose concentration in normal and diabetic man. The Journal of Clinical Endocrinology and Metabolism, 51, 877–883.CrossRefPubMedGoogle Scholar
- Seale, J. V., Wood, S. A., Atkinson, H. C., Harbuz, M. S., & Lightman, S. L. (2004). Gonadal steroid replacement reverses gonadectomy-induced changes in the corticosterone pulse profile and stress-induced hypothalamic-pituitary-adrenal axis activity of male and female rats. Journal of Neuroendocrinology, 16, 989–998.Google Scholar
- Shrestha, P. K., & Briski, K. P. (2015). Hindbrain lactate regulates preoptic gonadotropin-releasing hormone (GnRH) neuron GnRH-I protein but not AMPK responses to hypoglycemia in the steroid-primed ovariectomized female rat. Neuroscience, 298, 467–474.CrossRefPubMedPubMedCentralGoogle Scholar
- Shrestha, P. K., Tamrakar, P., Ibrahima, B. A., & Briski, K. P. (2014). Hindbrain medulla catecholamine cell group involvement in lactate-sensitive hypoglycemia-associated patterns of hypothalamic norepinephrine and epinephrine activity. Neuroscience, 278, 20–30.CrossRefPubMedGoogle Scholar
- Shughrue, P. J., Lane, M. V., & Merchenthaler, I. (1997). Comparative distribution of estrogen receptor-alpha and beta mRNA in the rat central nervous system. The Journal of Comparative Neurology, 388, 507–525.CrossRefPubMedGoogle Scholar
- Spence, R. D., Wisdom, A. J., Cao, Y., Hill, H. M., Mongerson, C. R., Stapornkul, B., Itoh, N., Sofroniew, M. V., & Voskuhl, R. R. (2013). Estrogen mediates neuroprotection and anti-inflammatory effects during EAE through ERα signaling on astrocytes but not through ERβ signaling on astrocytes or neurons. The Journal of Neuroscience, 33, 10924–10933.CrossRefPubMedPubMedCentralGoogle Scholar
- Stobart, J. L., & Anderson, C. M. (2013). Multifunctional role of astrocytes as gatekeepers of neuronal energy supply. Frontiers in Cellular Neuroscience, 7, 38. https://doi.org/10.3389/fncel.2013.00038.
- Suh, S. W., Bergher, J. P., Anderson, C. M., Treadway, J. L., Fosgerau, K., & Swanson, R. A. (2007). Astrocyte glycogen sustains neuronal activity during hypoglycemia: Studies with the glycogen phosphorylase inhibitor CP-316,819([R-R*,S*]-5-chloro-N-[2-hdroxy-3-(methoxymethylamino)-3-oxo-1-(phenylmethyl) propyl]-1H-indole-2-carboxamide). The Journal of Pharmacology and Experimental Therapeutics, 321, 45–50.CrossRefPubMedGoogle Scholar
- Tamrakar, P., & Briski, K. P. (2017). Impact of recurrent hypoglycemic stress on metabolic signaling in dorsal vagal complex neurons: Modulation by estradiol. Acta Neurobiologiae Experimentalis, 77, 31–44.Google Scholar
- Tamrakar, P., Ibrahim, B. A., Gujar, A. K., & Briski, K. P. (2015a). Estrogen regulates energy metabolic pathway and upstream AMPK kinase and phosphatase enzyme expression in dorsal vagal complex metabolo-sensory neurons during glucostasis and hypoglycemia. Journal of Neuroscience Research, 93, 321–332.CrossRefPubMedGoogle Scholar
- Tamrakar, P., Shrestha, P. K., & Briski, K. P. (2015b). Dorsomedial hindbrain catecholamine regulation of hypothalamic astrocyte glycogen metabolic enzyme protein expression: Impact of estradiol. Neuroscience, 292, 34–45.CrossRefPubMedGoogle Scholar
- ter Haar, M. B. (1972). Circadian and estrual rhythms in food intake in the rat. Hormones and Behavior, 3, 219–225.Google Scholar
- Vavaiya, K. V., & Briski, K. P. (2007). Caudal hindbrain lactate infusion alters glucokinase, SUR1, and neuronal substrate fuel transporter gene expression in the dorsal vagal complex, lateral hypothalamic area, and ventromedial nucleus hypothalamus of hypoglycemic male rats. Brain Research, 1176, 62–70.CrossRefPubMedGoogle Scholar
- Vavaiya, K. V., & Briski, K. P. (2008). Effects of caudal hindbrain lactate infusion on insulin-induced hypoglycemia and neuronal substrate transporter glucokinase and sulfonylurea receptor-1 gene expression in the ovariectomized female rat dorsal vagal complex: Impact of estradiol. Journal of Neuroscience Research, 86, 694–701.CrossRefPubMedGoogle Scholar
- Wade, G. N., & Jones, J. E. (2004). Neuroendocrinology of nutritional infertility. American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 287, R1227–R1296.Google Scholar
- White, N. H., Skor, D., Cryer, P. E., Bier, D. M., Levandoski, L., & Santiago, J. V. (1983). Identification of type 1 diabetic patients at increased risk for hypoglycemia during intensive therapy. The New England Journal of Medicine, 308, 485–491.CrossRefPubMedGoogle Scholar
- Wise, P. M., Rance, N., & Barraclough, C. A. (1981). Effects of estradiol and progesterone on catecholamine turn-over rates in discrete hypothalamic regions in ovariectomized rats. Endocrinology, 108, 2186–2193.CrossRefPubMedGoogle Scholar
- Wyss, M. T., Jolivet, R., Buck, A., Magistretti, P. J., & Weber, B. (2011). In vivo evidence for lactate as a neuronal energy source. The Journal of Neuroscience, 31, 7477–7485.CrossRefPubMedGoogle Scholar
- Zhu, W., Czyzyk, D., Paranjape, S. A., Zhou, L., Horblitt, A., Szabo, G., Seashore, M. R., & Sherwin, R. (2010). Glucose prevents the fall in ventromedial hypothalamic GABA that is required for full activation of glucose counterregulatory responses during hypoglycemia. American Journal of Physiology – Endocrinology and Metabolism, 298, E971–E977.CrossRefPubMedPubMedCentralGoogle Scholar