Between Contact and Support: Introducing a Logic for Image Schemas and Directed Movement

  • Maria M. HedblomEmail author
  • Oliver Kutz
  • Till Mossakowski
  • Fabian Neuhaus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10640)


Cognitive linguistics introduced image schemas as a missing link between embodied experiences and high-level conceptualisation in language and metaphorical thinking. They are described as the abstract spatio-temporal relationships that function as conceptual building blocks for everyday concepts and events. Although there is increasing interest in the area of cognitively motivated artificial intelligence, where image schemas are suggested to be a core piece in the puzzle to model human-level conceptualisation and reasoning, so far rather few formal logical approaches can be found in the literature, in particular regarding attention to the dynamic aspects of image schemas. A fundamental problem here is that the typical mainstream approaches in contemporary KR do not map well to various scenarios found in image schema modelling. In this paper, we introduce a spatio-temporal logic for ‘directed movement of objects’, with the aim to model formally image schematic events such as Blockage, Caused_Movement and ‘bouncing’.


  1. 1.
    Bennett, B., Cialone, C.: Corpus guided sense cluster analysis: a methodology for ontology development (with examples from the spatial domain). In: 8th International Conference on Formal Ontology in Information Systems (FOIS). Frontiers in Artificial Intelligence and Applications, vol. 267, pp. 213–226. IOS Press (2014)Google Scholar
  2. 2.
    Besold, T.R., Hedblom, M.M., Kutz, O.: A narrative in three acts: using combinations of image schemas to model events. BICA 19, 10–20 (2017)Google Scholar
  3. 3.
    Boroditsky, L.: Metaphoric structuring: understanding time through spatial metaphors. Cognition 75(1), 1–28 (2000)CrossRefGoogle Scholar
  4. 4.
    Cohn, A.G., Bennett, B., Gooday, J., Gotts, N.: RCC: a calculus for region based qualitative spatial reasoning. GeoInformatica 1, 275–316 (1997)CrossRefGoogle Scholar
  5. 5.
    Coulson, S., Cánovas, C.P.: Understanding timelines: conceptual metaphor and conceptual integration. Cogn. Semiot. 5(1–2), 198–219 (2014)Google Scholar
  6. 6.
    Finger, M., Gabbay, D.M.: Adding a temporal dimension to a logic system. J. Log. Lang. Inform. 1, 203–233 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Galton, A.: The formalities of affordance. In: Bhatt, M., Guesgen, H., Hazarika, S. (eds.) Proceedinds of Workshop Spatio-Temporal Dynamics, pp. 1–6 (2010)Google Scholar
  8. 8.
    Hampe, B., Grady, J.E.: From Perception to Meaning: Image Schemas in Cognitive Linguistics, vol. 29. Walter de Gruyter, Berlin (2005)Google Scholar
  9. 9.
    Hedblom, M.M., Kutz, O., Neuhaus, F.: Choosing the right path: image schema theory as a foundation for concept invention. JAGI 6(1), 22–54 (2015)Google Scholar
  10. 10.
    Hedblom, M.M., Kutz, O., Neuhaus, F.: Image schemas in computational conceptual blending. Cogn. Syst. Res. 39, 42–57 (2016)CrossRefGoogle Scholar
  11. 11.
    Johnson, M.: The Body in the Mind: The Bodily Basis of Meaning, Imagination, and Reason. The University of Chicago Press, Chicago (1987)Google Scholar
  12. 12.
    Knauff, M., Rauh, R., Renz, J.: A cognitive assessment of topological spatial relations: results from an empirical investigation. In: Hirtle, S.C., Frank, A.U. (eds.) COSIT 1997. LNCS, vol. 1329, pp. 193–206. Springer, Heidelberg (1997). CrossRefGoogle Scholar
  13. 13.
    Kontchakov, R., Kurucz, A., Wolter, F., Zakharyaschev, M.: Spatial logic + temporal logic=? In: Aiello, M., Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 497–564. Springer, Dordrecht (2007). CrossRefGoogle Scholar
  14. 14.
    Kröger, F., Merz, S.: Temporal Logic and State Systems. (Texts in Theoretical Computer Science. An EATCS Series). Springer, Heidelberg (2008). zbMATHGoogle Scholar
  15. 15.
    Kuhn, W.: An image-schematic account of spatial categories. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 152–168. Springer, Heidelberg (2007). CrossRefGoogle Scholar
  16. 16.
    Lakoff, G.: Women, Fire, and Dangerous Things. What Categories Reveal about the Mind. The University of Chicago Press, Chicago (1987)CrossRefGoogle Scholar
  17. 17.
    Lehmann, F., Cohn, A.G.: The EGG/YOLK reliability hierarchy: semantic data integration using sorts with prototypes. In: Proceedings of Conference on Information Knowledge Management, pp. 272–279. ACM Press (1994)Google Scholar
  18. 18.
    Ligozat, G.: Reasoning about cardinal directions. J. Vis. Lang. Comput. 9(1), 23–44 (1998)CrossRefGoogle Scholar
  19. 19.
    Ligozat, G.: Qualitative Spatial and Temporal Reasoning. Wiley, New York (2011)zbMATHGoogle Scholar
  20. 20.
    Mandler, J.M.: The Foundations of Mind: Origins of Conceptual Thought: Origins of Conceptual Though. Oxford University Press, New York (2004)Google Scholar
  21. 21.
    Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Proceedings of 3rd International Conference on Knowledge Representation and Reasoning (KR-1992) (1992)Google Scholar
  22. 22.
    Reynolds, M.: The complexity of temporal logic over the reals. Ann. Pure Appl. Log. 161(8), 1063–1096 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Scivos, A., Nebel, B.: The finest of its class: the natural point-based ternary calculus \({\cal{L}R}\) for qualitative spatial reasoning. In: Freksa, C., Knauff, M., Krieg-Brückner, B., Nebel, B., Barkowsky, T. (eds.) Spatial Cognition 2004. LNCS, vol. 3343, pp. 283–303. Springer, Heidelberg (2005). CrossRefGoogle Scholar
  24. 24.
    Shapiro, L.: Embodied Cogn. New problems of philosophy, Routledge, London and New York (2011)Google Scholar
  25. 25.
    Vakarelov, D., Düntsch, I., Bennett, B.: A note on proximity spaces and connection based mereology. In: Proceedings of International Conference on Formal Ontology in Information Systems (FOIS), pp. 139–150 (2001)Google Scholar
  26. 26.
    Weghe, N.V.D., Cohn, A.G., Tré, G.D., Maeyer, P.D.: A qualitative trajectory calculus as a basis for representing moving objects in geographical information systems. Control Cybern. 35(1), 97–119 (2006)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Maria M. Hedblom
    • 1
    • 2
    Email author
  • Oliver Kutz
    • 1
  • Till Mossakowski
    • 2
  • Fabian Neuhaus
    • 2
  1. 1.Free University of Bozen-BolzanoBozen-BolzanoItaly
  2. 2.Otto-von-Guericke University MagdeburgMagdeburgGermany

Personalised recommendations