Some Unsolved Problems About Condenser Capacities on the Plane

  • Vladimir N. DubininEmail author
Part of the Trends in Mathematics book series (TM)


In the paper we pose fourteen open problems of Potential Theory involved the conformal capacity of condensers with three and more plates, the logarithmic capacity, the relative capacity and extremal decompositions of the unit disk or the Riemann sphere. All problems are closely related to various applications in Geometric Function Theory of a complex variable.


Capacity of condenser Logarithmic capacity Relative capacity Symmetrization Asymptotic formulae Extremal decompositions 

2010 Mathematics Subject Classification

Primary: 31A15 31C15 31C20; Secondary: 30C85 30C70 



Vladimir N. Dubinin was supported by the Russian Science Foundation (Grant 14-11-00022).


  1. 1.
    L.V. Ahlfors, Conformal Invariants. Topics in Geometric Function Theory (McGraw-Hill Book Co., New York, 1973)Google Scholar
  2. 2.
    E.G. Akhmedzyanova, V.N. Dubinin, Radial transformations of sets, and inequalities for the transfinite diameter. Russ. Math. (Izvestiya VUZ. Matematika) 43(4), 1–6 (1999)Google Scholar
  3. 3.
    T. Bagby, The modulus of a plane condenser. J. Math. Mech. 17(4), 315–329 (1967)Google Scholar
  4. 4.
    A.K. Bakhtin, I.Y. Dvorak, I.V. Denega, A separating transformation in the problems of extremal decomposition of the complex plane. Dop. NAS Ukraine (12), 7–12 (2015) [in Russian]Google Scholar
  5. 5.
    V.N. Dubinin, The separating transformation of domains and problems on the extremal partition. Analytical theory of numbers and theory of functions. Part 9. Zap. Nauchn. Sem. LOMI 168, 48–66 (1988) [in Russian]Google Scholar
  6. 6.
    V.N. Dubinin, Capacities and geometric transformations of subsets in n-space. Geom. Funct. Anal. 3(4), 342–369 (1993)Google Scholar
  7. 7.
    V.N. Dubinin, Symmetrization in the geometric theory of functions of a complex variable. Russ. Math. Surv. 49(1), 1–79 (1994)Google Scholar
  8. 8.
    V.N. Dubinin, Symmetrization, Green’s function, and conformal mappings. J. Math. Sci. (New York) 89(1), 967–975 (1998)Google Scholar
  9. 9.
    V.N. Dubinin, Condenser Capacities and Symmetrization in the Geometric Theory of Functions of a Complex Variable (Dal’nauka, Vladivostok, 2009) [in Russian]Google Scholar
  10. 10.
    V.N. Dubinin, Steiner symmetrization and the initial coefficients of univalent functions. Izv. Math. 74(4), 735–742 (2010)Google Scholar
  11. 11.
    V.N. Dubinin, Methods of geometric function theory in classical and modern problems for polynomials. Russ. Math. Surv. 67(4), 599–684 (2012)Google Scholar
  12. 12.
    V.N. Dubinin, Asymptotic behavior of the capacity of a condenser as some of its plates contract to points, in Mathematical Notes, vol. 96(2) (Springer, Berlin, 2014), pp. 187–198Google Scholar
  13. 13.
    V.N. Dubinin, On the reduced modulus of the complex sphere. Sib. Math. J. 55(5), 882–892 (2014)Google Scholar
  14. 14.
    V.N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory. Translated from the Russian by Nikolai G. Kruzhilin (Birkhäuser/Springer, Basel, 2014)Google Scholar
  15. 15.
    V.N. Dubinin, Schwarzian derivative and covering arcs of a pencil of circles by holomorphic functions. Math. Not. 98(6), 920–925 (2015)Google Scholar
  16. 16.
    V.N. Dubinin, Inequalities for harmonic measures with respect to non-overlapping domains. Izv. Math. 79(5), 902–918 (2015)Google Scholar
  17. 17.
    V.N. Dubinin, The logarithmic energy of zeros and poles of a rational function. Sib. Math. J. 57(6), 981–986 (2016)Google Scholar
  18. 18.
    V.N. Dubinin, D.B. Karp, Generalized condensers and distortion theorems for conformal mappings of planar domains, in The Interaction of Analysis and Geometry, ed. by V.I. Burenkov, T. Iwaniec, S.K.Vodopyanov. Contemporary Mathematics, vol. 424 (American Mathematical Society, Providence, RI, 2007), pp. 33–51Google Scholar
  19. 19.
    V.N. Dubinin, V.Y. Kim, Generalized condensers and boundary distortion theorems for conformal mappings. Dal’nevost. Mat. Zh. 13(2), 196–208 (2013) [in Russian]Google Scholar
  20. 20.
    V.N. Dubinin, M. Vuorinen, Robin functions and distortion theorems for the regular mapping. Math. Nach. 283(11), 1589–1602 (2010)Google Scholar
  21. 21.
    V.N. Dubinin, M. Vuorinen, Ahlfors-Beurling conformal invariant and relative capacity of compact sets. Proc. Am. Math. Soc. 142(11), 3865–3879 (2014)Google Scholar
  22. 22.
    J.A. Jenkins, Some theorems on boundary distortion. Trans. Am. Math. Soc. 81, 477–500 (1956)Google Scholar
  23. 23.
    J.A. Jenkins, On the existence of certain general extremal metrics. Ann. Math. 66(3), 440–453 (1957); Tohoku Math. J. 45(2), 249–257 (1993)Google Scholar
  24. 24.
    Y. Komatu, Uber eine Verscharfung des Lownerschen Hilfssatzes. Proc. Imp. Acad. Jpn. 18, 354–359 (1942)Google Scholar
  25. 25.
    E.V. Kostyuchenko, The solution of one problem of extremal decomposition. Dal’nevost. Mat. Zh. 2(1), 13–15 (2001) [in Russian]Google Scholar
  26. 26.
    L.V. Kovalev, On the problem of extremal decomposition with free poles on a circle. Dal’nevost. Mat. Sb. 2, 96–98 (1996) [in Russian]Google Scholar
  27. 27.
    G.V. Kuz’mina, Connections between different problems on extremal decomposition. J. Math. Sci. (New York) 105(4), 2197–2209 (2001)Google Scholar
  28. 28.
    G.V. Kuz’mina, The method of extremal metric in extremal decomposition problems with free parameters. J. Math. Sci. (New York) 129(3), 3843–3851 (2005)Google Scholar
  29. 29.
    G.V. Kuz’mina, Geometric function theory. Jenkins results. The method of modules of curve families. Analytical theory of numbers and theory of functions. Part 31. Zap. Nauchn. Sem. POMI 445, 181–249 (2016)Google Scholar
  30. 30.
    G.F. Lawler, Conformally Invariant Processes in the Plane. Mathematical Surveys and Monographs, vol. 114 (American Mathematical Society, Providence, RI, 2005)Google Scholar
  31. 31.
    O.A. Lazareva, Capacity Properties of Uniformly Perfect Sets and Condensers: Classical Results and New Studies (Lambert Academic Publishing, Saarbrücken, 2012)Google Scholar
  32. 32.
    G. Polya, G. Szego, Isoperimetric Inequalities in Mathematical Physics (Princeton University Press, Princeton, NJ, 1951)Google Scholar
  33. 33.
    C. Pommerenke, Univalent Functions, with a Chapter on Quadratic Differentials by Gerd Jensen (Vandenhoeck & Ruprecht, Gottingen, 1975)Google Scholar
  34. 34.
    C. Pommerenke, Boundary Behaviour of Conformal Maps (Springer, Berlin, 1992)CrossRefzbMATHGoogle Scholar
  35. 35.
    A.Y. Solynin, Extremal configurations of certain problems on the capacity and harmonic measure. J. Math. Sci. (New York) 89(1), 1031–1049 (1998)Google Scholar
  36. 36.
    A.Y. Solynin, Modules and extremal metric problems. St. Petersbg. Math. J. 11(1), 1–65 (2000)zbMATHGoogle Scholar
  37. 37.
    A. Vasil’ev, Moduli of Families of Curves for Conformal and Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 1788 (Springer, Berlin, 2002)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Far Eastern Federal UniversityVladivostokRussia
  2. 2.Institute of Applied MathematicsVladivostokRussia

Personalised recommendations