FORK: Feedback-Aware ObjectRank-Based Keyword Search over Linked Data

  • Takahiro Komamizu
  • Sayami Okumura
  • Toshiyuki Amagasa
  • Hiroyuki Kitagawa
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10648)


Ranking quality for keyword search over Linked Data (LD) is crucial when users look for entities from LD, since datasets in LD have complicated structures as well as much contents. This paper proposes a keyword search method, FORK, which ranks entities in LD by ObjectRank, a well-known link-structure analysis algorithm that can deal with different types of nodes and edges. The first attempt of applying ObjectRank to LD search reveals that ObjectRank with inappropriate settings gives worse ranking results than PageRank which is equivalent to ObjectRank with all the same authority transfer weights. Therefore, deriving appropriate authority transfer weights is the most important issue for encouraging ObjectRank in LD search. FORK involves a relevance feedback algorithm to modify the authority transfer weights according with users’ relevance judgements for ranking results. The experimental evaluation of ranking qualities using an entity search benchmark showcases the effectiveness of FORK, and it proves ObjectRank is more feasible raking method for LD search than PageRank and other comparative baselines including information retrieval techniques and graph analytic methods.


Keyword Search over Linked Data ObjectRank-based ranking Relevance feedback Authority transfer graph modification 



This research was partly supported by the program Research and Development on Real World Big Data Integration and Analysis of RIKEN, Japan, and Fujitsu Laboratory, APE29707.


  1. 1.
  2. 2.
  3. 3.
    Baeza-Yates, R., Ribeiro-Neto, B., et al.: Modern Information Retrieval, vol. 463. ACM Press, New York (1999)Google Scholar
  4. 4.
    Balmin, A., Hristidis, V., Papakonstantinou, Y.: ObjectRank: authority-based keyword search in databases. In: VLDB 2004, pp. 564–575 (2004)Google Scholar
  5. 5.
    Balog, K., Bron, M., de Rijke, M.: Query modeling for entity search based on terms, categories, and examples. ACM Trans. Inf. Syst. 29(4), 22:1–22:31 (2011)CrossRefGoogle Scholar
  6. 6.
    Balog, K., Neumayer, R.: A test collection for entity search in DBpedia. In: SIGIR 2013, pp. 737–740 (2013)Google Scholar
  7. 7.
  8. 8.
    Ding, L., Finin, T.W., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: CIKM 2004, pp. 652–659 (2004)Google Scholar
  9. 9.
    Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P.: Finding and ranking knowledge on the semantic web. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 156–170. Springer, Heidelberg (2005). doi: 10.1007/11574620_14 CrossRefGoogle Scholar
  10. 10.
    Harth, A., Kinsella, S., Decker, S.: Using naming authority to rank data and ontologies for web search. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 277–292. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04930-9_18 CrossRefGoogle Scholar
  11. 11.
    He, H., Wang, H., Yang, J., Yu, P.S.: BLINKS: ranked keyword searches on graphs. In: SIGMOD 2007, pp. 305–316 (2007)Google Scholar
  12. 12.
    Kim, J., Xue, X., Croft, W.B.: A probabilistic retrieval model for semistructured data. In: Boughanem, M., Berrut, C., Mothe, J., Soule-Dupuy, C. (eds.) ECIR 2009. LNCS, vol. 5478, pp. 228–239. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-00958-7_22 CrossRefGoogle Scholar
  13. 13.
    Le, W., Li, F., Kementsietsidis, A., Duan, S.: Scalable keyword search on large RDF data. IEEE Trans. Knowl. Data Eng. 26(11), 2774–2788 (2014)CrossRefGoogle Scholar
  14. 14.
    Neumayer, R., Balog, K., Nørvåg, K.: When simple is (more than) good enough: effective semantic search with (almost) no semantics. In: Baeza-Yates, R., Vries, A.P., Zaragoza, H., Cambazoglu, B.B., Murdock, V., Lempel, R., Silvestri, F. (eds.) ECIR 2012. LNCS, vol. 7224, pp. 540–543. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-28997-2_59 CrossRefGoogle Scholar
  15. 15.
    Ogilvie, P., Callan, J.P.: combining document representations for known-item search. In: SIGIR 2003, pp. 143–150 (2003)Google Scholar
  16. 16.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Technical report 1999-66, Stanford InfoLab, November 1999Google Scholar
  17. 17.
    Pound, J., Mika, P., Zaragoza, H.: Ad-hoc object retrieval in the web of data. In: WWW 2010, pp. 771–780 (2010)Google Scholar
  18. 18.
    Robertson, S.E., Zaragoza, H.: The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 3(4), 333–389 (2009)CrossRefGoogle Scholar
  19. 19.
    Sinha, V., Karger, D.R.: Magnet: supporting navigation in semistructured data environments. In: SIGMOD 2005, pp. 97–106 (2005)Google Scholar
  20. 20.
    Varadarajan, R., Hristidis, V., Raschid, L.: Explaining and reformulating authority flow queries. In: ICDE 2008, pp. 883–892 (2008)Google Scholar
  21. 21.
    Zhai, C.: Statistical language models for information retrieval: a critical review. Found. Trends Inf. Retr. 2(3), 137–213 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Takahiro Komamizu
    • 1
  • Sayami Okumura
    • 1
  • Toshiyuki Amagasa
    • 1
  • Hiroyuki Kitagawa
    • 1
  1. 1.University of TsukubaTsukubaJapan

Personalised recommendations