Advertisement

Go with the Dual Flow: Evaluating the Psychophysiological Adaptive Fitness Game Environment “Plunder Planet”

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10622)

Abstract

Exergaming is approved by health and sport science for its improvement of physical activity and therefore is an attractive way to counteract childhood obesity. The body-centered game genre provides a motivating, multi-modal and -sensory workout experience for the player.

But the attractiveness and effectiveness of exergames can be improved even further. Game research points out the need for adaptive exergame environments, which balance player skills and in-game challenges as well as player fitness and workout intensity. This individually adjusted training positively affects the player’s engagement, enjoyment, motivation, and physical performance. Numerous studies delivered further insights into the impact of body movements, motion-based controllers and in-game mechanics on the player’s gameplay experience, and made suggestions for specific game balancing mechanisms. However, there is limited knowledge on how to design holistic psychophysiological adaptive exergame environments. We aim to fill this gap with the design of the psychophysiological adaptive fitness game environment “Plunder Planet” for children and young adolescents.

We conducted a study which compares the impact of a non-adaptive and an adaptive version of our exergame on the attractiveness and the effectiveness experienced by the player. We were able to show that the adaptive version holds significant benefits compared to the non-adaptive version. Furthermore, the study compared the player’s experiences when playing “Plunder Planet” with two different controller types: our specifically developed full-body-motion controller and the commercially available Kinect2®. Results confirm our controller design decisions, including the positive impact of haptic feedback and physical guidance on the player’s GameFlow experience and enjoyment.

Keywords

Exergame fitness training Dual flow Plunder Planet Children 

Notes

Acknowledgment

We thank Koboldgames GmbH for their excellent cooperation in the realization of the “Plunder Planet” game scenario.

References

  1. 1.
  2. 2.
    Mazzeo, D., Arens, S.A., Germeroth, C., Hein, H.: Stopping childhood obesity before it begins. SAGE: Phi Delta Kappan 93(7), 10–15 (2012). doi: 10.1177/003172171209300704 Google Scholar
  3. 3.
    Oh, Y., Yang, S.: Defining exergames and exergaming. In: Proceedings of Meaningful Play, pp. 1–17 (2010)Google Scholar
  4. 4.
    Osorio, G., Moffat, D.C., Sykes, J.: Exergaming, exercise, and gaming: sharing motivations. Games Health: Res. Dev. Clin. Appl. 1(3), 205–210 (2012). doi: 10.1089/g4h.2011.0025 CrossRefGoogle Scholar
  5. 5.
    Wiemeyer, J., Temper, L.: Edutainment in sport and health. In: Nakatsu, R., Rauterberg, M., Ciancarini, P. (eds.) Handbook of Digital Games and Entertainment Technologies, pp. 883–908. Springer Science + Business Media, Singapore (2017). doi: 10.1007/978-981-4560-50-4_67 CrossRefGoogle Scholar
  6. 6.
    Murphy, E.C., Carson, L., Neal, W., Baylis, C., Donley, D., Yeater, R.: Effects of an exercise intervention using Dance Dance Revolution on endothelial function and other risk factors in overweight children. Int. J. Pediatr. Obes. 4(4), 205–214 (2009). doi: 10.3109/17477160902846187 CrossRefGoogle Scholar
  7. 7.
    Harris, K., Reid, D.: The influence of virtual reality play on children’s motivation. Can. J. Occup. Ther. 72(1), 21–29 (2005). doi: 10.1177/000841740507200107 CrossRefGoogle Scholar
  8. 8.
    Fery, Y.A., Ponserre, S.: Enhancing the control of force in putting by video game training. Ergonomics 44(12), 1025–1037 (2001). doi: 10.1080/00140130110084773 CrossRefGoogle Scholar
  9. 9.
    Sohnsmeyer, J.: Virtuelles Spiel und realer Sport – Über Transferpotenziale digitaler Sportspiele am Beispiel von Tischtennis (Virtual games and real sport–About the transfer potentials of sport games using the example of table tennis), Hamburg, Czwalina (2011)Google Scholar
  10. 10.
    Sohnsmeyer, J., Gilbrich, H., Weisser, B.: Effect of a six-week-intervention with an activity promoting video game on isometric muscle strength in elderly subjects. Int. J. Comput. Sci. Sport 9(2), 75–79 (2010)Google Scholar
  11. 11.
    Csikszentmihalyi, M.: Flow. Harper Collins Publishers, New York (1990)Google Scholar
  12. 12.
    Weibel, D., Wissmath, B.: Immersion in computer games: the role of spatial presence and flow. Int. J. Comput. Games Technol. article no. 6, pp. 1–14 (2011). doi: 10.1155/2011/282345
  13. 13.
    Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 3 (2005). doi: 10.1145/1077246.1077253 CrossRefGoogle Scholar
  14. 14.
    Bianchi-Berthouze, N.: Understanding the role of body movement in player engagement. HCI 28(1), 40–75 (2013)Google Scholar
  15. 15.
    Pasch, M., Bianchi-Berthouze, N., van Dijk, B., Nijholt, A.: Movement-based sports video games: investigating motivation and gaming experience. Entertain. Comput. 1(2), 49–61 (2009). doi: 10.1016/j.entcom.2009.09.004 CrossRefGoogle Scholar
  16. 16.
    Nijhar, J., Bianchi-Berthouze, N., Boguslawski, G.: Does movement recognition precision affect the player experience in exertion games? In: Camurri, A., Costa, C. (eds.) INTETAIN 2011. LNICSSITE, vol. 78, pp. 73–82. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30214-5_9 CrossRefGoogle Scholar
  17. 17.
    Skalski, P., Tamborini, R., Shelton, A., Buncher, M., Lindmark, P.: Mapping the road to fun: natural video game controllers, presence, and game enjoyment. New Media Soc. 13(2), 224–242 (2011). doi: 10.1177/1461444810370949 CrossRefGoogle Scholar
  18. 18.
    Stach, T., Graham, T.C.N.: Exploring haptic Feedback in exergames. In: Campos, P., Graham, N., Jorge, J., Nunes, N., Palanque, P., Winckler, M. (eds.) INTERACT 2011. LNCS, vol. 6947, pp. 18–35. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-23771-3_2 CrossRefGoogle Scholar
  19. 19.
    Kim, S.Y.S., Prestopnik, N., Biocca, F.A.: Body in the interactive game: how interface embodiment affects physical activity and health behavior change. Comput. Hum. Behav. 36, 376–384 (2014). doi: 10.1016/j.chb.2014.03.067 CrossRefGoogle Scholar
  20. 20.
    Sinclair, J., Hingston, P., Masek, M.: Considerations for the design of exergames. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 289–295. ACM, New York (2007). doi: 10.1145/1321261.1321313
  21. 21.
    Altimira, D., Mueller, F., Clarke, J., Lee, G., Billinghurst, M., Bartneck, C.: Digitally augmenting sports: an opportunity for exploring and understanding novel balancing techniques. In: Conference on Human Factors in Computing Systems (CHI 2016), pp. 1681–1691. ACM, New York (2016). doi: 10.1145/2858036.2858277
  22. 22.
    Gerling, K.M., Miller, M., Mandryk, R.L., Birk, M.V., Smeddinck, J.D.: Effects of balancing for physical abilities on player performance, experience and self-esteem in exergames. In: SIGCHI Conference on Human Factors in Computing Systems (CHI 2014), pp. 2201–2210. ACM, New York (2014). doi: 10.1145/2556288.2556963
  23. 23.
    Altimira, D., Mueller, F., Lee, G., Clarke, J., Billinghurst, M.: Towards understanding balancing in exertion games. In: Proceedings of the 11th Conference on Advances in Computer Entertainment Technology (ACE 2014), pp. 1–10. ACM, New York (2014). doi: 10.1145/2663806.2663838
  24. 24.
    Cardona, J.E.M., Cameirao, M.S., Paulino, T., i Badia, S.B., Rubio, E.: Modulation of physiological responses and activity levels during exergame experiences. In: Proceedings of the 8th International Conference on Games and Virtual Worlds for Serious Applications (VS-Games), pp. 1–8. IEEE (2016). doi: 10.1109/VS-GAMES.2016.7590353
  25. 25.
    Mueller, F., Vetere, F., Gibbs, M.R., Edge, D., Agamanolis, S., Sheridan, J.G., Heer, J.: Balancing exertion experiences. In: SIGCHI Conference on Human Factors in Computing Systems (CHI 2012), pp. 1853–1862. ACM, New York (2012). doi: 10.1145/2207676.2208322
  26. 26.
    Martin, A.L., Kluckner, V.J.: Player-centred design model for psychophysiological adaptive exergame fitness training for children. In: Schouten, B., Fedtke, S., Schijven, M., Vosmeer, M., Gekker, A. (eds.) Games for Health 2014, pp. 105–109. Springer, Wiesbaden (2014). doi: 10.1007/978-3-658-07141-7_14 Google Scholar
  27. 27.
    Martin-Niedecken, A.L., Götz, U.: Design and evaluation of a dynamically adaptive fitness game environment for children and young adolescents. In: Annual Symposium on Computer-Human Interaction in Play, pp. 205–212. ACM, New York (2016). doi: 10.1145/2968120.2987720
  28. 28.
    Robergs, R.A., Landwehr, R.: The surprising history of the “HRmax = 220-age” equation. J. Exerc. Physiol. 5(2), 1–10 (2002)Google Scholar
  29. 29.
    World Medical Association: Declaration of Helsinki. Law Med. Health Care 19, 264–265 (1991)Google Scholar
  30. 30.
    Kliem, A., Wiemeyer, J.: Comparison of a traditional and a video game based balance training program. Int. J. Comput. Sci. Sport 9(2), 80–91 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Subject Area Game DesignZurich University of the ArtsZurichSwitzerland

Personalised recommendations