Active Prediction in Dynamical Systems

  • Chun-Chung Chen
  • Kevin Sean Chen
  • C. K. Chan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10637)


Using a hidden Markov model (HMM) that describes the position of a damped stochastic harmonic oscillator as a stimulus input to a data processing system, we consider the optimal response of the system when it is targeted to predict the coming stimulus at a time shift later. We quantify the predictive behavior of the system by calculating the mutual information (MI) between the response and the stimulus of the system. For a passive sensor, the MI typically peaks at a negative time shift considering the processing delay of the system. Using an iterative approach of maximum likelihood for the predictive response, we show that the MI can peak at a positive time shift, which signifies the functional behavior of active prediction. We find the phenomena of active prediction in bullfrog retinas capable of producing omitted stimulus response under periodic pulse stimuli, by subjecting the retina to the same HMM signals encoded in the pulse interval. We confirm that active prediction requires some hidden information to be recovered and utilized from the observation of past stimulus by replacing the HMM with a Ornstein–Uhlenbeck process, which is strictly Markovian, and showing that no active prediction can be observed.


Retina Mutual information Predictive dynamics Omitted stimulus response Stochastic process 


  1. 1.
    Saigusa, T., Tero, A., Nakagaki, T., Kuramoto, Y.: Amoebae anticipate periodic events. Phys. Rev. Lett. 100(1), 018101 (2008)CrossRefGoogle Scholar
  2. 2.
    Schwartz, G., Harris, R., Shrom, D., Berry, M.J.: Detection and prediction of periodic patterns by the retina. Nat. Neurosci. 10(5), 552–554 (2007)CrossRefGoogle Scholar
  3. 3.
    Yang, Y.J., Chen, C.C., Lai, P.Y., Chan, C.K.: Adaptive synchronization and anticipatory dynamical systems. Phys. Rev. E 92(3), 030701 (2015)CrossRefGoogle Scholar
  4. 4.
    Bialek, W., Tishby, N.: Predictive information (1999). arXiv:cond-mat/9902341
  5. 5.
    Rubin, J., Ulanovsky, N., Nelken, I., Tishby, N.: The representation of prediction error in auditory cortex. PLoS Comput. Biol. 12(8), e1005058 (2016)CrossRefGoogle Scholar
  6. 6.
    Palmer, S.E., Marre, O., Berry, M.J., Bialek, W.: Predictive information in a sensory population. Proc. Natl. Acad. Sci. 112(22), 6908–6913 (2015)CrossRefGoogle Scholar
  7. 7.
    Chen, K.S., Chen, C.C., Chan, C.K.: Characterization of predictive behavior of a retina by mutual information. Front. Comput. Neurosci. 11, 66 (2017)CrossRefGoogle Scholar
  8. 8.
    Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Phys. Rev. 36(5), 823–841 (1930)CrossRefzbMATHGoogle Scholar
  9. 9.
    Schwartz, G., Berry, M.J.: Sophisticated temporal pattern recognition in retinal ganglion cells. J. Neurophysiol. 99(4), 1787–1798 (2008)CrossRefGoogle Scholar
  10. 10.
    Tishby, N., Pereira, F.C., Bialek, W.: The information bottleneck method (2000). arXiv:physics/0004057

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Chun-Chung Chen
    • 1
  • Kevin Sean Chen
    • 1
    • 2
  • C. K. Chan
    • 1
    • 3
  1. 1.Institute of PhysicsAcademia SinicaTaipeiRepublic of China
  2. 2.Department of Life ScienceNational Taiwan UniversityTaipeiRepublic of China
  3. 3.Department of Physics and Center for Complex SystemsNational Central UniversityChungliRepublic of China

Personalised recommendations