Advertisement

Wake-Sleep Variational Autoencoders for Language Modeling

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10634)

Abstract

Variational Autoencoders (VAEs) are known to easily suffer from the KL-vanishing problem when combining with powerful autoregressive models like recurrent neural networks (RNNs), which prohibits their wide application in natural language processing. In this paper, we tackle this problem by tearing the training procedure into two steps: learning effective mechanisms to encode and decode discrete tokens (wake step) and generalizing meaningful latent variables by reconstructing dreamed encodings (sleep step). The training pattern is similar to the wake-sleep algorithm: these two steps are trained alternatively until an equilibrium is achieved. We test our model in a language modeling task. The results demonstrate significant improvement over the current state-of-the-art latent variable models.

Keywords

Variational Autoencoder Wake-sleep algorithm Language modeling Latent variable 

Notes

Acknowledgement

This work was supported by the DFG collaborative research center SFB 1102 and the National Natural Science of China under Grant No. 61602451, 61672445.

References

  1. 1.
    Bowman, S.R., Vilnis, L., Vinyals, O., Dai, A.M., Jozefowicz, R., Bengio, S.: Generating sentences from a continuous space. In: Conference on Natural Language Learning (2016)Google Scholar
  2. 2.
    Shen, X., Su, H., Li, Y., Li, W., Niu, S., Zhao, Y., Aizawa, A., Long, G.: A conditional variational framework for dialog generation. In: Association for Computational Linguistics (2017)Google Scholar
  3. 3.
    Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (2014)Google Scholar
  4. 4.
    Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: Proceedings of The 31st International Conference on Machine Learning, pp. 1278–1286 (2014)Google Scholar
  5. 5.
    Serban, I.V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., Bengio, Y.: A hierarchical latent variable encoder-decoder model for generating dialogues. In: Association for the Advancement of Artificial Intelligence (2017)Google Scholar
  6. 6.
    Zhao, T., Zhao, R., Eskenazi, M.: Learning discourse-level diversity for neural dialog models using conditional variational autoencoders. In: Association for Computational Linguistics (2017)Google Scholar
  7. 7.
    Hinton, G.E., Van Camp, D.: Keeping the neural networks simple by minimizing the description length of the weights. In: Proceedings of the Sixth Annual Conference on Computational Learning Theory, pp. 5–13. ACM (1993)Google Scholar
  8. 8.
    Zemel, R.S.: Autoencoders, minimum description length and Helmholtz free energy. In: Neural Information Processing Systems (1994)Google Scholar
  9. 9.
    Chen, X., Kingma, D.P., Salimans, T., Duan, Y., Dhariwal, P., Schulman, J., Sutskever, I., Abbeel, P.: Variational lossy autoencoder. arXiv preprint arXiv:1611.02731 (2016)
  10. 10.
    Yang, Z., Hu, Z., Salakhutdinov, R., Berg-Kirkpatrick, T.: Improved variational autoencoders for text modeling using dilated convolutions. In: International Conference on Machine Learning (2017)Google Scholar
  11. 11.
    Semeniuta, S., Severyn, A., Barth, E.: A hybrid convolutional variational autoencoder for text generation. arXiv preprint arXiv:1702.02390 (2017)
  12. 12.
    Chelba, C., Mikolov, T., Schuster, M., Ge, Q., Brants, T., Koehn, P., Robinson, T.: One billion word benchmark for measuring progress in statistical language modeling. arXiv preprint arXiv:1312.3005 (2013)
  13. 13.
    Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
  14. 14.
    Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Xiaoyu Shen
    • 1
  • Hui Su
    • 2
  • Shuzi Niu
    • 2
  • Dietrich Klakow
    • 1
  1. 1.Spoken Language Systems (LSV)Saarland UniversitySaarbrückenGermany
  2. 2.Software InstituteUniversity of Chinese Academy of ScienceBeijingChina

Personalised recommendations