Advertisement

Multi-view Label Space Dimension Reduction

  • Qi Hu
  • Pengfei ZhuEmail author
  • Changqing Zhang
  • Qinghua Hu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10634)

Abstract

In multi-label classification, the explosion of the label space makes the classic multi-label classification models computationally inefficient and degrades the classification performance. To alleviate the curse of dimensionality in label space, many label space dimension reduction (LSDR) algorithms have been developed in last few years. Whereas, they are all designed for single-view learning and ignore that one sample can be represented from different views. In this paper, we propose a multi-view LSDR model for multi-label classification. The weights of different views are learned and then multi-view label embedding results are combined by the learned weights. Experiments on benchmark datasets show that the proposed multi-view learning model outperforms the best single-view model and the majority voting method.

Keywords

Multi-view learning Label embedding Dimension reduction 

Notes

Acknowledgements

This work was supported by the National Program on Key Basic Research Project under Grant 2013CB329304, the National Natural Science Foundation of China under Grants 61502332, 61432011, 61222210.

References

  1. 1.
    Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: ICML (2012)Google Scholar
  2. 2.
    Bi, W., Kwok, J.T.Y.: Efficient multi-label classification with many labels. In: ICML, pp. 405–413 (2013)Google Scholar
  3. 3.
    Boutell, M., Luo, J., Shen, X., Brown, C.M.: Learning multi-label scene classification. Pattern Recogn. 37(9), 1757–1771 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, Y.N., Lin, H.T.: Feature-aware label space dimension reduction for multi-label classification. In: NIPS, pp. 1529–1537 (2012)Google Scholar
  5. 5.
    Duygulu, P., Barnard, K., Freitas, J., Forsyth, D.A.: Object recognition as machine translation: learning a lexicon for a fixed image vocabulary. In: ECCV, pp. 97–112 (2001)Google Scholar
  6. 6.
    Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification, pp. 681–687 (2001)Google Scholar
  7. 7.
    Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge 2007 (VOC2007) results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html
  8. 8.
    Fakeri-Tabrizi, A., Amini, M.R., Gallinari, P.: Multiview semi-supervised ranking for automatic image annotation. In: ACM MM, pp. 513–516 (2013)Google Scholar
  9. 9.
    Hsu, D., Kakade, S., Langford, J., Zhang, T.: Multi-label prediction via compressed sensing. In: NIPS, vol. 22, pp. 772–780 (2009)Google Scholar
  10. 10.
    Li, X., Guo, Y.: Multi-label classification with feature-aware non-linear label space transformation. In: IJCAI, pp. 3635–3642 (2015)Google Scholar
  11. 11.
    Li, Y., Yang, M., Xu, Z., Zhang, Z.: Multi-view learning with limited and noisy tagging. In: IJCAI, pp. 957–966 (2016)Google Scholar
  12. 12.
    Lin, Z., Ding, G., Hu, M., Wang, J.: Multi-label classification via feature-aware implicit label space encoding. In: ICML, pp. 325–333 (2014)Google Scholar
  13. 13.
    Luo, Y., Tao, D., Xu, C., Xu, C., Liu, H., Wen, Y.: Multiview vector-valued manifold regularization for multilabel image classification. TNNLS 24(5), 709–722 (2013)Google Scholar
  14. 14.
    Makadia, A., Pavlovic, V., Kumar, S.: A new baseline for image annotation. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 316–329. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88690-7_24 CrossRefGoogle Scholar
  15. 15.
    Tai, F., Lin, H.T.: Multilabel classification with principal label space transformation. Neural Comput. 24(9), 2508–2542 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O., Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685. Springer, Bostan (2009). doi: 10.1007/978-0-387-09823-4_34 CrossRefGoogle Scholar
  17. 17.
    Yeh, C.K., Wu, W.C., Ko, W.J., Wang, Y.C.F.: Learning deep latent spaces for multi-label classification. In: AAAI (2017)Google Scholar
  18. 18.
    Zhang, L., Wang, S., Zhang, X., Wang, Y., Li, B., Shen, D., Ji, S.: Collaborative multi-view denoising. In: KDD, pp. 2045–2054 (2016)Google Scholar
  19. 19.
    Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. TKDE 26(8), 1819–1837 (2014)Google Scholar
  20. 20.
    Zhang, M., Zhou, Z.: Ml-knn: a lazy learning approach to multi-label learning. Pattern Recogn. 40(7), 2038–2048 (2007)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, X., Yuan, Q., Zhao, S., Fan, W., Zheng, W., Wang, Z.: Multi-label classification without the multi-label cost, pp. 778–789 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Qi Hu
    • 1
  • Pengfei Zhu
    • 1
    Email author
  • Changqing Zhang
    • 1
  • Qinghua Hu
    • 1
  1. 1.School of Computer Science and TechnologyTianjin UniversityTianjinChina

Personalised recommendations