Advertisement

Harmful Algal Blooms in a Changing Ocean

  • Mark L. Wells
  • Bengt Karlson
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

Climate change research has progressed rapidly over the last two decades, with model projections of future climate conditions gaining enough consensus to enable downscaling these changes to regional scales. While the field of HAB research has come far since its early roots, our current understanding is not well suited to utilize advances in climate modeling to project how HABs’ prevalence and character may differ in the future oceans. This situation largely is due to the complexity of interspecies competition, but it also can be attributed to the “insular” nature of HAB research. HAB studies focus more on the HAB organism, often in isolated cultures, than on the phytoplankton community in which it may or may not flourish. Even though GEOHAB fostered comparative research, it most often is not possible to quantitatively compare among published HAB studies because nonuniform methods are used. Most HAB observational programs are triggered only when toxic species abundances become high enough to threaten human health, so the specific conditions that catalyze these bloom developments cannot be described. It is difficult then to project how changing environmental conditions may influence the development of HABs, particularly given that these events generally are comparatively rare within the context of dynamic coastal ecosystems. Participants in an international workshop considered these issues and identified a number of specific steps, presented in small part here, that will help HAB research to obtain compelling evidence that climate change is impacting HAB distribution, prevalence, or character. New HAB research strategies are needed if we are to develop informed projections for HABs under anticipated end-of-century conditions in the future oceans.

Notes

Acknowledgments

This is NOAA ECOHAB contribution number 920.

References

  1. Anderson DM, Rengefors K (2006) Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events. Limnol Oceanogr 51(2):860–873CrossRefGoogle Scholar
  2. Aoki K, Onitsuka G, Shimizu M et al (2014) Variability of factors driving spatial and temporal dispersion in river plume and Chattonella antiqua bloom in the Yatsushiro Sea, Japan. Mar Pollut Bull 81(1):131–139CrossRefPubMedGoogle Scholar
  3. Auro ME, Cochlan WP (2013) Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana. J Phycol 49(1):156–169CrossRefPubMedGoogle Scholar
  4. Bates SS, Trainer VL (2006) The ecology of harmful diatoms. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 81–93CrossRefGoogle Scholar
  5. Beardall J, Raven JA (2004) The potential effects of global climate change on microbial photosynthesis, growth and ecology. Phycologia 43:26–40CrossRefGoogle Scholar
  6. Beardall J, Stojkovic S, Larsen S (2009) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2(2):191–205CrossRefGoogle Scholar
  7. Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755CrossRefGoogle Scholar
  8. Bernard S, Kudela R, Velo-Suárez L (2014) Developing global capabilities for the observation and prediction of harmful algal blooms. In: Djavidnia S, Cheung V, Ott M et al (eds) Oceans and society, blue planet. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 46–52Google Scholar
  9. Bissenger JE, Montagnes SJ, Atkinson D (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53:487–493CrossRefGoogle Scholar
  10. Boyd PW, Rynearson T, Armstrong EA et al (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091.  https://doi.org/10.1371/journal.pone.0063091CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buskey EJ, Liu H, Collumb C, Bersano JGF (2001) The decline and recovery of a persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). Estuaries 24:337–346CrossRefGoogle Scholar
  12. Campbell L, Olson RJ, Sosik HM et al (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the US is revealed by automated imaging flow cytometry. J Phycol 46(1):66–75CrossRefGoogle Scholar
  13. Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9(3):387–446CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cho ES, Kotaki Y, Park JG (2001) The comparison between toxic Pseudo-nitzschia multiseries (Hasle) Hasle and non-toxic P. pungens (Grunow) Hasle isolated from Jinhae Bay, Korea. Algae 16:275–285Google Scholar
  15. Colin SP, Dam H (2002) Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonica. Harmful Algae 1:113–125CrossRefGoogle Scholar
  16. Dason JS, Colman B (2004) Inhibition of growth in two dinoflagellates by rapid changes in external pH. Can J Bot 82(4):515–520CrossRefGoogle Scholar
  17. Djavidnia S, Cheung V, Ott M et al (eds) (2014) Oceans and society, blue planet. Cambridge Scholars Publishing, Newcastle upon Tyne, p 285Google Scholar
  18. Dyhrman ST, Anderson DM (2003) Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol Oceanogr 48(2):647–655CrossRefGoogle Scholar
  19. Eckford-Soper L, Daugbjerg N (2016) The ichthyotoxic genus Pseudochattonella (Dictyochophyceae): distribution, toxicity, enumeration, ecological impact, succession and life history – a review. Harmful Algae 58:51–58CrossRefPubMedGoogle Scholar
  20. Engström-Ost J, Viitasalo M, Jodonasdottir S et al (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885CrossRefGoogle Scholar
  21. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  22. Etheridge SM, Roesler CS (2005) Effects of temperature, irradiance, and salinity on photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates from the Gulf of Maine. Deep Sea Res II 52:2491–2500CrossRefGoogle Scholar
  23. Farrell H, Gentien P, Fernand L et al (2012) Scales characterising a high density thin layer of Dinophysis acuta Ehrenberg and its transport within a coastal jet. Harmful Algae 15:36–46CrossRefGoogle Scholar
  24. Figueiras FG, Pitcher GC, Estrada M (2006) Harmful algal bloom dynamics in relation to physical processes. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 127–138CrossRefGoogle Scholar
  25. Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35(1):3–11CrossRefGoogle Scholar
  26. Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132CrossRefGoogle Scholar
  27. Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233CrossRefGoogle Scholar
  28. Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131CrossRefPubMedGoogle Scholar
  29. Gjosaeter J, Lekve K, Stenseth NC, Leinaas HP, Christie H, Dahl E, Danielssen DS, Edvardsen B, Olsgard F, Oug E, Paasche E (2000) A long-term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: a catastrophe or an innocent incident? Mar Ecol Prog Ser 207:201–218CrossRefGoogle Scholar
  30. Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259CrossRefGoogle Scholar
  31. Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land-, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76CrossRefGoogle Scholar
  32. Glibert PM, Heil CA, Wilkerson F et al (2018c) Nutrients and HABs: dynamic kinetics and flexible nutrition. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 93–112CrossRefGoogle Scholar
  33. Granéli E, Turner JT (eds) (2006) Ecology of harmful algae. Springer, Berlin, p 413Google Scholar
  34. Häder DP, Helbling W, Williamson CE et al (2010) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 10:242–260.  https://doi.org/10.1039/C0PP90036BCrossRefGoogle Scholar
  35. Hallegraeff GM, Blackburn SI, Doblin MA et al (2012) Global toxicology, ecophysiology and population relationships of the chainforming PST dinoflagellate Gymnodinium catenatum. Harmful Algae 14:130–143CrossRefGoogle Scholar
  36. Hallegraeff GM, Marshall JA, Valentine J (1998) Short cyst-dormancy period of an Australian isolate of the toxic dinoflagellate Alexandrium catenella. Mar Freshw Res 49:415–420CrossRefGoogle Scholar
  37. Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28(3):279–288CrossRefGoogle Scholar
  38. Hansson L-A, Nicolle A, Granéli W et al (2013) Food-chain length alters community responses to global change in aquatic systems. Nat Clim Chang 3(3):228–233CrossRefGoogle Scholar
  39. Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300CrossRefGoogle Scholar
  40. Hubbart B, Pitcher GC, Krock B et al (2012) Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae 20:30–41CrossRefGoogle Scholar
  41. Intergovermental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NYGoogle Scholar
  42. Itakura S, Yamaguchi M (2005) Morphological and physiological differences between the cysts of Alexandrium catenella and A. tamarense (Dinophyceae) in the Seto Inland Sea, Japan. Plankton Biol Ecol 57:85–91Google Scholar
  43. Jeffrey SW, MacTavish HS, Dunlap WC et al (1999) Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar Ecol Prog Ser 189:35–51CrossRefGoogle Scholar
  44. Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65–91CrossRefGoogle Scholar
  45. Jester R, Lefebvre KA, Langlois G et al (2009) A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs. Harmful Algae 8(2):291–298CrossRefGoogle Scholar
  46. Kahru M, Elmgren R, Savchuk OP (2016) Changing seasonality of the Baltic Sea. Biogeosciences 13(4):1009–1018CrossRefGoogle Scholar
  47. Kamykowski D, McCollum SA (1986) The temperature acclimatized swimming speed of selected marine dinoflagellates. J Plankton Res 8:275–287CrossRefGoogle Scholar
  48. Koski M, Rosenberg M, Viitasalo M et al (1999) Is Prymnesium patelliferum toxic for copepods? – Grazing, egg production, and egestion of the calanoid copepod Eurytemora affinis in mixtures of “good” and “bad” food. ICES J Mar Sci 56:131–139CrossRefGoogle Scholar
  49. Kremp A, Godhe A, Egardt J et al (2012) Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2(6):1195–1207CrossRefPubMedPubMedCentralGoogle Scholar
  50. Kudela RM, Seeyave S, Cochlan WP (2010) The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr 85(1–2):122–135CrossRefGoogle Scholar
  51. Lelong A, Hégaret H, Soudant P et al (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51(2):168–216CrossRefGoogle Scholar
  52. Leong SCY, Murata A, Nagashima Y et al (2004) Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon 43(4):407–415CrossRefPubMedGoogle Scholar
  53. Levasseur M, Gamache T, St.-Pierre I et al. (1995) Does the cost of NO3 reduction affect the production of harmful compounds by Alexandrium excavatum? In: Lassus, P, Arzul G, Erard E et al (eds), Harmful marine algal blooms. Technique et Documentation-Lavoisier, Intercept Ltd, pp 463–468Google Scholar
  54. Lewis NI, Bates SS, McLachlan JL et al (1993) Temperature effects on growth, domoic acid production, and morphology of the diatom Nitzschia-pungens f. multiseries. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea, 3. Elsevier Science Publ B V, Amsterdam, pp 601–606Google Scholar
  55. Longhurst A (1998) Ecological geography of the sea. Academic Press, San Diego, p 398Google Scholar
  56. Lonnstedt OM, Munday PL, McCormick MI, Ferrari MCO et al (2013) Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO2 on fish? Ecol Evol 3(10):3565–3575PubMedPubMedCentralGoogle Scholar
  57. Lundholm N, Hansen PJ, Kotaki Y (2004) Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser 273:1–15CrossRefGoogle Scholar
  58. McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett 43(19):10366–10376CrossRefPubMedPubMedCentralGoogle Scholar
  59. McGillicuddy DJ, Townsend DW, He R et al (2011) Suppression of the 2010 Alexandrium fundyense bloom by changes in physical, biological, and chemical properties of the Gulf of Maine. Limnol Oceanogr 56(6):2411–2426CrossRefPubMedPubMedCentralGoogle Scholar
  60. McManus MA, Kudela RM, Silver MW et al (2008) Cryptic blooms: are thin layers the missing connection? Estuar Coasts 31(2):396–401CrossRefGoogle Scholar
  61. Mitra A, Flynn KJ (2006) Accounting for variation in prey selectivity by zooplankton. Ecol Model 199(1):82–92CrossRefGoogle Scholar
  62. Mohlin M, Roleda MY, Pattanaik B et al (2012) Interspecific resource competition-combined effects of radiation and nutrient limitation on two diazotrophic filamentous cyanobacteria. Microb Ecol 63(4):736–750CrossRefPubMedGoogle Scholar
  63. Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11CrossRefPubMedGoogle Scholar
  64. Moore SK, Mantua NJ, Hickey BM et al (2009) Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8(3):463–477CrossRefGoogle Scholar
  65. Nimer NA, Iglesias-Rodríguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33(4):625–631CrossRefGoogle Scholar
  66. Ogata T, Kodama M, Ishimaru T (1989) Effect of water temperature and light intensity on growth rate and toxin production of toxic dinoflagellates. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides, biology, environmental science and toxicology. Elsevier, New York, NY, pp 423–426Google Scholar
  67. Okolodkov YB (1999) Species range types of recent marine dinoflagellates recorded from the Arctic. Grana 38(2–3):162–169CrossRefGoogle Scholar
  68. Okolodkov YB (2005) The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4(2):351–369CrossRefGoogle Scholar
  69. Paczkowska J, Rowe OF, Schlüter L et al (2017) Allochthonous matter: an important factor shaping the phytoplankton community in the Baltic Sea. J Plankton Res 39(1):23–34CrossRefPubMedGoogle Scholar
  70. Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59(3):660–673CrossRefGoogle Scholar
  71. Pettersson LH, Pozdnyakov D (2013) Biology and ecology of harmful algal species. In: Pettersson LH, Pozdnyakov D (eds) Monitoring of harmful algal blooms. Springer, Berlin, pp 25–47CrossRefGoogle Scholar
  72. Pitcher GC, Horstman DA, Calder D et al (1993) The first record of diarrhetic shellfish poisoning on the South-African coast. S Afr J Sci 89(10):512–514Google Scholar
  73. Preston CM, Harris A, Ryan JP et al (2011) Underwater application of quantitative PCR on an ocean mooring. PLoS One 6(8):e22522.  https://doi.org/10.1371/journal.pone.0022522CrossRefPubMedPubMedCentralGoogle Scholar
  74. Raine R (2014) A review of the biophysical interactions relevant to the promotion of HABs in stratified systems: the case study of Ireland. Deep Sea Res Part II 101:21–31CrossRefGoogle Scholar
  75. Raven JA, Geide RJ (1988) Temperature and algal growth. New Phytol 110:411–416CrossRefGoogle Scholar
  76. Rhodes LL, O’Kelly CJO, Hall JA (1994) Comparison of growth characteristics of New Zealand isolates of the prymnesiophytes Chrysochromulina quadrikonta and C. camella with those of the ichthyotoxic species C. polylepis. J Plankton Res 16:69–82CrossRefGoogle Scholar
  77. Rines JEB, Donaghay PL, Dekshenieks MM et al (2002) Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225:123–137CrossRefGoogle Scholar
  78. Roemmich D, Gould WJ, Gilson J (2012) 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat Clim Chang 2(6):425–428CrossRefGoogle Scholar
  79. Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30(1):7–16CrossRefGoogle Scholar
  80. Schultz M, Kjørboe T (2009) Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates. J Plankton Res 31:553–561CrossRefGoogle Scholar
  81. Smayda TJ (1992) Global epidemic of noxious phytoplankton blooms and food chain consequences in large ecosystems. In: Sherman K, Alexander L, Gold BD (eds) Food chains, yields, models, and management of large marine ecosystems. Westview Press, San Francisco, pp 275–307Google Scholar
  82. Smayda TJ (1997) What is a bloom? A commentary. Limnol Oceanogr 42(5):1132–1136CrossRefGoogle Scholar
  83. Smayda TJ (1998) Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES J Mar Sci 55(4):562–573CrossRefGoogle Scholar
  84. Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr 85(1–2):92–107CrossRefGoogle Scholar
  85. Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. In: IPCC (ed) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, p 1535Google Scholar
  86. Strom SL (2002) Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 180:41–54CrossRefGoogle Scholar
  87. Strom SL, Harvey EL, Fredrickson KA et al (2013) Broad salinity tolerance as a refuge from predation in the harmful raphidophyte alga Heterosigma akashiwo (Raphidophyceae). J Phycol 49(1):20–31CrossRefPubMedGoogle Scholar
  88. Sun J, Hutchins DA, Feng Y et al (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr 56(3):829–840CrossRefGoogle Scholar
  89. Tatters AO, Fu FX, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One 7(2):e32116.  https://doi.org/10.1371/journal.pone.0032116CrossRefPubMedPubMedCentralGoogle Scholar
  90. Taylor M, McIntyre L, Ritson M et al (2013) Outbreak of diarrhetic shellfish poisoning associated with mussels, British Columbia, Canada. Mar Drugs 11(5):1669–1676CrossRefPubMedPubMedCentralGoogle Scholar
  91. Trainer V, Yoshida M (eds) (2014) Proceedings of the workshop on economic impacts of harmful algal blooms on fisheries and aquaculture. PICES Sci Rep No 47, p 85Google Scholar
  92. Trainer VL, Bates SS, Lundholm N et al (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300CrossRefGoogle Scholar
  93. Trainer VL, Moore L, Bill BD et al (2013) Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar Drugs 11(6):1815–1835CrossRefPubMedPubMedCentralGoogle Scholar
  94. Turner JT (2006) Harmful algae interactions with marine planktonic grazers. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 259–270CrossRefGoogle Scholar
  95. Van Dolah ER, Paolisso M, Sellner K et al (2016) Employing a socio-ecological systems approach to engage harmful algal bloom stakeholders. Aquat Ecol 50(3):577–594CrossRefGoogle Scholar
  96. Wells ML (2003) The level of iron enrichment required to initiate diatoms blooms in HNLC waters. Mar Chem 82:101–114CrossRefGoogle Scholar
  97. Wells ML, Trainer VL, Smayda et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93CrossRefPubMedPubMedCentralGoogle Scholar
  98. Zheng Y, Dam HG, Avery DE (2011) Differential responses of populations of the copepod Acartia hudsonica to toxic and nutritionally insufficient food algae. Harmful Algae 10(6):723–731CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Marine Sciences, University of MaineOronoUSA
  2. 2.Research & Development, Oceanography, Swedish Meteorological and Hydrological InstituteVästra FröundaSweden

Personalised recommendations