Advertisement

Mitigation and Control of Harmful Algal Blooms

  • Zhiming Yu
  • Xiuxian Song
  • Xihua Cao
  • Yang Liu
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

Harmful algal blooms (HABs) have traditionally been a natural phenomenon. However, human activities have promoted the occurrence and global spread of HABs to such an extent that they have now become a serious environmental problem in most coastal waters around the world. Presently, accurate prediction of HAB occurrence remains a highly challenging task. Because HABs affect areas with important social and economic values, such as cooling water sites of nuclear power plants, aquaculture sites, and tourism beaches, therefore urgent mitigating measures are needed to reduce risks and damage. This chapter briefly reviews those methods that are now available to control and mitigate the impacts of HABs, with a focus on the approaches using clay or modified clay. Controlling HABs using natural clay is a method used in many parts of the world and has been studied most intensively in Japan, South Korea, China, and the USA. However, the efficiency of natural clay in removing HAB organisms is generally low. On the other hand, the use of modified clay has proven to be superior in removal efficiency, the theory of which is summarized in this chapter. Our studies have shown that modified clays have increased the removal efficiency by several hundred times and have had no detectable negative impacts on aquatic organisms and environment.

References

  1. Al Shehhi MR, Gherboudj I, Ghedira H (2014) An overview of historical harmful algae blooms outbreaks in the Arabian Seas. Mar Pollut Bull 86(1–2):314–324CrossRefPubMedGoogle Scholar
  2. Anderson DM (1997) Turning back the harmful red tide. Nature 388(6642):513–514CrossRefGoogle Scholar
  3. Anderson DM (2004) Prevention, control, and mitigation of harmful algal blooms: multiple approaches to HAB management. In: Hall S, Etheridge S, Anderson D et al (eds) Harmful algae management and mitigation. Asia-Pacific Economic Cooperation, APEC Publication 204-MR-04.2, Singapore, pp 123–130Google Scholar
  4. Anderson DM (2014) HABs in a changing world: a perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climactic and environmental change. In: Kim HG, Reguera B, Hallegraeff GM et al (eds) Harmful algae 2012: proceedings of the 15th International conference on Harmful Algae. International Society for the Study of Harmful Algae, pp 3–17Google Scholar
  5. Anderson DM, Andersen P, Bricelj VM et al (2001) Monitoring and management strategies for harmful algal blooms in coastal waters Asia-Pacific Economic Program. Singapore, and Intergovernmetal Oceanographic Commission, Paris, 268 ppGoogle Scholar
  6. Anderson DM, Cembella AD, Hallegraeff GM (2012) Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu Rev Mar Sci 4:143–176CrossRefGoogle Scholar
  7. Archambault M-C, Bricelj VM, Grant J et al (2004) Effects of suspended and sedimented clays on juvenile hard clams, Mercenaria mercenaria, within the context of harmful algal bloom miti gation. Mar Biol 144(3):553–565CrossRefGoogle Scholar
  8. Avnimelech Y, Troeger BW, Reed LW (1982) Mutual flocculation of algae and clay: evidence and implications. Science 216(4541):63–65CrossRefPubMedGoogle Scholar
  9. Baek SH, Son M, Jung SW et al (2014) Enhanced species-specific chemical control of harmful and non-harmful algal bloom species by the thiazolidinedione derivative TD49. J Appl Phycol 26(1):311–321CrossRefGoogle Scholar
  10. Baek SH, Sun XX, Lee YJ et al (2003) Mitigation of harmful algal blooms by sophorolipid. J Microbiol Biotech 13(5):651–659Google Scholar
  11. Barani M, Yousefzadi M, Moezi M (2015) Essential oils, new source of algicidal compounds. J Appl Phycol 27(1):267–273CrossRefGoogle Scholar
  12. Beaulieu SE, Sengco MR, Anderson DM (2005) Using clay to control harmful algal blooms: deposition and resuspension of clay/algal flocs. Harmful Algae 4(1):123–138CrossRefGoogle Scholar
  13. Burson A, Matthijs HC, de Bruijne W et al (2014) Termination of a toxic Alexandrium bloom with hydrogen peroxide. Harmful Algae 31:125–135CrossRefPubMedGoogle Scholar
  14. Cao X, Song X, Yu Z (2004) Removal efficiency of red tide organisms by modified clay and its impacts on cultured organisms. Environ Sci 25(5):148–152 (in Chinese)Google Scholar
  15. Cao X, Yu Z (2003a) Extinguishment of harmful algae by organo-clay. Chin J Appl Ecol 14(7):1169–1172 (in Chinese)Google Scholar
  16. Cao X, Yu Z (2003b) Mechanism of quaternary ammonium compounds extinguishing Heterosigma Akashiwo. Oceanol Limnol Sin 34(2):201–207 (in Chinese)Google Scholar
  17. Divakaran R, Pillai VNS (2002) Flocculation of algae using chitosan. J Appl Phycol 14(5):419–422CrossRefGoogle Scholar
  18. Doucette GJ (1995) Interactions between bacteria and harmful algae: a review. Nat Toxins 3(2):65–74CrossRefPubMedGoogle Scholar
  19. Gao Y, Yu Z, Song X et al (2007) Impact of modified clays on the infant oyster (Crassostrea gigas). Mar Sci Bull 26(3):53–60 (in Chinese)Google Scholar
  20. GB/T 30743-2014. Technical guidelines for treatment with red tide disaster. China’s National Standards. China Standard Press, Beijing (in Chinese)Google Scholar
  21. Glibert PM, Anderson DM, Gentien P et al (2005) The global, complex phenomena of harmful algal blooms. Oceanography 18(2):136–147CrossRefGoogle Scholar
  22. Glibert PM, Harrison J, Heil C et al (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochem 77(3):441–463CrossRefGoogle Scholar
  23. Guangxi Academy of Sciences (2015) http://www.gxas.cn/Gxas/news.aspx?id=3099 (in Chinese)
  24. Guilbaud J, Masse A, Wolff FC et al (2015) Porous membranes for ballast water treatment from microalgae-rich seawater. Mar Pollut Bull 101(2):612–617CrossRefPubMedGoogle Scholar
  25. Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32(2):79–99CrossRefGoogle Scholar
  26. Han MY, Kim W (2001) A theoretical consideration of algae removal with clays. Microchem J 68(2–3):157–161CrossRefGoogle Scholar
  27. Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8(1):3–13CrossRefPubMedPubMedCentralGoogle Scholar
  28. Imai I, Yamaguchi M, Hori Y (2006) Eutrophication and occurrences of harmful algal blooms in the Seto Inland Sea, Japan. Plankton Benthos Res 1(2):71–84CrossRefGoogle Scholar
  29. Jeong HJ, Kim HR, Kim KI et al (2002) NaOCl produced by electrolysis of natural seawater as a potential method to control marine red-tide dinoflagellates. Phycologia 41(6):643–656CrossRefGoogle Scholar
  30. Jeong HJ, Kim JS, Yoo YD et al (2008) Control of the harmful alga Cochlodinium polykrikoides by the naked ciliate Strombidinopsis jeokjo in mesocosm enclosures. Harmful Algae 7(3):368–377CrossRefGoogle Scholar
  31. Jiang X, Tang Y, Lonsdale DJ et al (2009) Deleterious consequences of a red tide dinoflagellate Cochlodinium polykrikoides for the calanoid copepod Acartia tonsa. Mar Ecol Prog Ser 390(10):105–116CrossRefGoogle Scholar
  32. Joyce LB, Pitcher GC, Randt AD et al (2005) Dinoflagellate cysts from surface sediments of Saldanha Bay, South Africa: an indication of the potential risk of harmful algal blooms. Harmful Algae 4(2):309–318CrossRefGoogle Scholar
  33. Kim CH, Park TG, Lee C (2010) Harmful dinoflagellates and mitigation strategies in Korea. Philipp J Sci 139(2):139–147Google Scholar
  34. Kim HG (1987) Ecological study of dinoflagellates responsible for red tide. 1. The population growth and control of Prorocentrum triestinum Schiller. Bull Nat Fish Res Dev Instit 39:1–6Google Scholar
  35. Kim HG (2006) Mitigation and controls of HABs. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, Berlin, pp 327–338CrossRefGoogle Scholar
  36. Kim HG (2010) An overview on the occurrences of harmful algal blooms (HABs) and mitigation strategies in Korean coastal waters. In: Ishimatsu A, Lie H-J (eds) Coastal environmental and ecosystem issues of the East China Sea. Terrapub and Nagasaki University Publication, Tokyo, pp 121–131Google Scholar
  37. Kodama M, Doucette G, Green D (2006) Relationships between bacteria and harmful algae. In: Granéli E, Turner J (eds) Ecology of harmful algae. Springer, Berlin, pp 243–255CrossRefGoogle Scholar
  38. Lee YC, Jin E, Jung SW et al (2013) Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides. Scientific Rep 3:1292.  https://doi.org/10.1038/srep01292CrossRefGoogle Scholar
  39. Lee YJ, Choi JK, Kim EK et al (2008) Field experiments on mitigation of harmful algal blooms using a sophorolipid—yellow clay mixture and effects on marine plankton. Harmful Algae 7(2):154–162CrossRefGoogle Scholar
  40. Lewis MA, Dantin DD, Walker CC et al (2003) Toxicity of clay flocculation of the toxic dinoflagellate, Karenia brevis, to estuarine invertebrates and fish. Harmful Algae 2(4):235–246CrossRefGoogle Scholar
  41. Li YH, Wu T, Yang WD et al (2014) The effectiveness of five natural products against three species of harmful algae. Water Environ J 28(2):270–276CrossRefGoogle Scholar
  42. Lin Y (2013) Influence of aggregates morphology and algal organic materials on the efficiency of modified clays deployed in mitigation of HAB organisms. PhD Dissertation, University of Chinese Academy of Sciences (in Chinese)Google Scholar
  43. Liu G, Fan C, Zhong J et al (2010) Using hexadecyl trimethyl ammonium bromide (CTAB) modified clays to clean the Microcystis aeruginosa blooms in Lake Taihu, China. Harmful Algae 9(4):413–418CrossRefGoogle Scholar
  44. Liu L, Zhou J, Zheng B et al (2013) Temporal and spatial distribution of red tide outbreaks in the Yangtze River Estuary and adjacent waters, China. Mar Pollut Bull 72(1):213–221CrossRefPubMedGoogle Scholar
  45. Liu Y, Cao X, Yu Z et al (2015) Flocculation of harmful algal cells using modified clay: effects of the properties of the clay suspension. J Appl Phycol:1–11Google Scholar
  46. Liu Y, Cao X, Yu Z et al (2016) Controlling harmful algae blooms using aluminum-modified clay. Mar Pollut Bull 103(1–2):211–219PubMedGoogle Scholar
  47. Lu G (2014) Effects of HABs mitigation by modified clay on major nutrient cycling and algal toxins. PhD Dissertation, University of Chinese Academy of Sciences (in Chinese)Google Scholar
  48. Lu G, Song X, Yu Z et al (2015a) Effects of modified clay flocculation on major nutrients and diatom aggregation during Skeletonema costatum blooms in the laboratory. Chin J Oceanol Limnol 33:1007–1019CrossRefGoogle Scholar
  49. Lu G, Song X, Yu Z et al (2015b) Environmental effects of modified clay flocculation on Alexandrium tamarense and paralytic shellfish poisoning toxins (PSTs). Chemosphere 127:188–194CrossRefPubMedGoogle Scholar
  50. Ma J, Liu W (2002) Effectiveness and mechanism of potassium ferrate (VI) preoxidation for algae removal by coagulation. Water Res 36(4):871–878CrossRefPubMedGoogle Scholar
  51. Maranda L, Cox AM, Campbell RG et al (2013) Chlorine dioxide as a treatment for ballast water to control invasive species: shipboard testing. Mar Pollut Bull 75(1–2):76–89CrossRefPubMedGoogle Scholar
  52. Marcoval MA, Pan J, Tang Y et al (2013) The ability of the branchiopod, Artemia salina, to graze upon harmful algal blooms caused by Alexandrium fundyense, Aureococcus anophagefferens, and Cochlodinium polykrikoides. Estuar Coast Shelf Sci 131:235–244CrossRefGoogle Scholar
  53. Maruyama T, Yamada R, Usui K et al (1987) Removal of marine red tide planktons with acid treated clay. Nippon Suisan Gakkaishi 53(10):1811–1819CrossRefGoogle Scholar
  54. Mei Z, Zhang Z, Zhao C et al (2010) Dynamics of phytoplankton and water quality with control of cyanobacterial bloom in Lake Xuanwu, Nanjing. J Lake Sci 22(1):44–48 (in Chinese)Google Scholar
  55. Miao C, Tang Y, Zhang H et al (2014) Harmful algae blooms removal from fresh water with modified vermiculite. Environ Technol 35(3):340–346CrossRefPubMedGoogle Scholar
  56. Mu R, Ma G, Sun C et al (2014) Inhibition of Microcystis aeruginosa and microcystin-LR with one algicidal bacterium isolated from a eutrophic lake. Afr J Biotech 11(2):460–465Google Scholar
  57. Ni J, Yu Y, Feng W et al (2010) Impacts of algal blooms removal by chitosan-modified soils on zooplankton community in Taihu Lake, China. J Environ Sci 22(10):1500–1507CrossRefGoogle Scholar
  58. Okaichi T, Yanagi T (eds) (1997) Sustainable development in the Seto Inland Sea, Japan: from the viewpoint of fisheries. Terra Scientific Publishing, Tokyo. 329 ppGoogle Scholar
  59. Olsen RO, Hoffmann F, Hess-Erga OK et al (2016) Ultraviolet radiation as a ballast water treatment strategy: Inactivation of phytoplankton measured with flow cytometry. Mar Pollut Bull 103(1–2):270–275CrossRefPubMedGoogle Scholar
  60. Orizar IS, Rivera PPL, Azanza RV (2013) Harmful algal bloom (HAB) mitigation using ball clay: effect on non-target organisms. J Environ Sci Manag 5(2):36–43Google Scholar
  61. Padilla L, San Diego-McGlone M, Azanza R (2010) Exploring the potential of clay in mitigating Pyrodinium bahamense var. compressum and other harmful algal species in the Philippines. J Appl Phycol 22(6):761–768CrossRefGoogle Scholar
  62. Pang Y, Ding Y, Sun B (2013) Removal of red tide organism by a novel cationic polymeric flocculant. Procedia Environ Sci 18:602–609CrossRefGoogle Scholar
  63. Park MG, Kim S, Shin E-Y et al (2013a) Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae 30:S62–S74CrossRefGoogle Scholar
  64. Park TG, Lim WA, Park YT et al (2013b) Economic impact, management and mitigation of red tides in Korea. Harmful Algae 30:S131–S143CrossRefGoogle Scholar
  65. People’s Network (2006) http://news.163.com/06/0106/15/26PUQJHP0001124R.html (in Chinese)
  66. Pierce RH, Henry MS, Higham CJ et al (2004) Removal of harmful algal cells (Karenia brevis) and toxins from seawater culture by clay flocculation. Harmful Algae 3(2):141–148CrossRefGoogle Scholar
  67. Public Network (2008) http://news.163.com/08/0118/01/42F2Q7H00001124J.html (in Chinese)
  68. Randhawa V, Thakkar M, Wei L (2013) Effect of algal growth phase on Aureococcus anophagefferens susceptibility to hydrogen peroxide. Aquat Toxicol 142:230–238CrossRefPubMedGoogle Scholar
  69. Rounsefell GA, Evans JE (1958) Large-scale experimental test of copper sulfate as a control for the Florida red tide. Special Scientific Report Fisheries No. 270. US Department of the Interior, Fish and Wildlife Service, Washington, DCGoogle Scholar
  70. Secher S (2009) Measures to control harmful algal blooms. The Plymouth Stud Sci 2(1):212–227Google Scholar
  71. Seger A, Dorantes-Aranda JJ, Müller MN et al (2015) Mitigating fish-killing Prymnesium parvum algal blooms in aquaculture ponds with clay: the importance of pH and clay type. J Mar Sci Eng 3(2):154–174CrossRefGoogle Scholar
  72. Sengco MR (2009) Prevention and control of Karenia brevis blooms. Harmful Algae 8(4):623–628CrossRefGoogle Scholar
  73. Sengco MR, Anderson DM (2004) Controlling harmful algal blooms through clay flocculation. J Eukaryot Microbiol 51(2):169–172CrossRefPubMedGoogle Scholar
  74. Sengco MR, Li A, Tugend K et al (2001) Removal of red- and brown-tide cells using clay floc culation. I. Laboratory culture experiments with Gymnodinium breve and Aureococcus anophagefferens. Mar Ecol Prog Ser 210:41–53CrossRefGoogle Scholar
  75. Shao J, Li R, Lepo JE et al (2013) Potential for control of harmful cyanobacterial blooms using biologically derived substances: problems and prospects. J Environ Manage 125:149–155CrossRefPubMedGoogle Scholar
  76. Shirota A (1989) Red tide problem and countermeasures (2). Int J Aquat Fish Technol 1:195–223Google Scholar
  77. Shumway SE, Frank DM, Ewart LM (2003) Effect of yellow yellow clay on clearance rate in seven species of benthic, filter-feeding invertebrates. Aquac Res 34(15):1391–1402CrossRefGoogle Scholar
  78. Song X, Yu Z, Gao Y (2003) Removal of different species of red tide organisms with an effective clay-complex system. Chin J Appl Ecol 14(7):1165–1168 (in Chinese)Google Scholar
  79. Sukenik A, Bilanovic D, Shelef G (1988) Flocculation of microalgae in brackish and sea waters. Biomass 15(3):187–199CrossRefGoogle Scholar
  80. Sun X, Zhang B, Yu Z (2001) Toxicity study of anti-HABs agents on Penaeus chinensis. Mar Sci Bull 3(1):51–54 (in Chinese)Google Scholar
  81. Sun X-X, Han K-N, Choi J-K et al (2004a) Screening of surfactants for harmful algal blooms mitigation. Mar Pollut Bull 48(9–10):937–945CrossRefPubMedGoogle Scholar
  82. Sun X-X, Lee Y-J, Choi J-K et al (2004b) Synergistic effect of sophorolipid and yellow clay combination in harmful algal blooms mitigation. Mar Pollut Bull 48(9–10):863–872CrossRefPubMedGoogle Scholar
  83. Tang YZ, Gobler CJ (2011) The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10(5):480–488CrossRefGoogle Scholar
  84. Tang YZ, Kang Y, Berry D et al (2015) The ability of the red macroalga, Porphyra purpurea (Rhodophyceae) to inhibit the proliferation of seven common harmful microalgae. J Appl Phycol 27(1):531–544CrossRefGoogle Scholar
  85. Teen LP, Gires U, Pin LC (2012) Harmful algal blooms in Malaysian waters. Sains Malays 41(12):1509–1515Google Scholar
  86. Tenney MW, Echelberger WF Jr, Schuessler RG et al (1969) Algal flocculation with synthetic organic polyelectrolytes. Appl Microb 18(6):965–971Google Scholar
  87. Tilney CL, Pokrzywinski KL, Coyne KJ et al (2014) Growth, death, and photobiology of dinoflagellates (Dinophyceae) under bacterial-algicide control. J Appl Phycol 26(5):2117–2127CrossRefGoogle Scholar
  88. Tilton RC, Murphy J, Dixon JK (1972) The flocculation of algae with synthetic polymeric flocculants. Water Res 6(2):155–164CrossRefGoogle Scholar
  89. Wang H, Yu Z, Cao X et al (2011) Fractal dimensions of flocs between clay particles and HAB organisms. Chin J Oceanol Limnol 29(3):656–663CrossRefGoogle Scholar
  90. Wang Z (2014) The effects of modified clay on benthonic organisms in mitigation of harmful algal blooms (HABs). PhD Dissertation, University of Chinese Academy of Sciences (in Chinese)Google Scholar
  91. Wu Y, Lee Y, Jung S-G et al (2014) A novel thiazolidinedione derivative TD118 showing selective algicidal effects for red tide control. World J Microb Biotech 30(5):1603–1614CrossRefGoogle Scholar
  92. Wu P, Yu Z (2007) Extinguishment of harmful algae by organo—clay modified by Gemini surfactant. Environ Sci 28(1):80–86 (in Chinese)Google Scholar
  93. Xu Y, Yang J, Ou M et al (2007) Study of Microcystis aeruginosa inhibition by electrochemical method. Biochem Eng J 36(3):215–220CrossRefGoogle Scholar
  94. Yang X, Li X, Zhou Y et al (2014) Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Sci Total Environ 482:116–124CrossRefPubMedGoogle Scholar
  95. Yang Y, Liu Q, Chai Z et al (2015) Inhibition of marine coastal bloom-forming phytoplankton by commercially cultivated Gracilaria lemaneiformis (Rhodophyta). J Appl Phycol 27(6):2341–2352CrossRefGoogle Scholar
  96. Yu Z, Rao DS (1998) Impact of halloysite on growth of Psuedonitzschia pungens f. multiseries and production of algal toxin. Oceanol Limnol Sin 29(1):47–52 (in Chinese)Google Scholar
  97. Yu Z, Zou J, Ma X (1993) The chemical means of controlling red tides. Oceanol Limnol Sin 24(3):314–318 (in Chinese)Google Scholar
  98. Yu Z, Zou J, Ma X (1994a) A more effective clay for removing red tide organisms. J Nat Dis 3(2):105–109 (in Chinese)Google Scholar
  99. Yu Z, Zou J, Ma X (1994b) A new method to improve the capability of clays for removing red tide organisms. Oceanol Limnol Sin 25(2):226–232 (in Chinese)Google Scholar
  100. Yu Z, Zou J, Ma X (1994c) Application of clays to removal of red tide organisms I. Coagulation of red tide organisms with clays. Chin J Oceanol Limnol 12(3):193–200CrossRefGoogle Scholar
  101. Yu Z, Zou J, Ma X (1994d) Application of clays to removal of red tide organisms II. Coagulation of different species of red tide organisms with montmorillonite and effect of clay pretreatment. Chin J Oceanol Limnol 12(4):316–324CrossRefGoogle Scholar
  102. Yu Z, Zou J, Ma X (1995) Application of clays to removal of red tide organisms III. The coagulation of kaolin on red tide organisms. Chin J Oceanol Limnol 13(1):62–70CrossRefGoogle Scholar
  103. Yu Z, Sun X, Song X (1999) Clay surface modification and its coagulation of red tide organisms. Chin Sci Bull 44(7):617–620CrossRefGoogle Scholar
  104. Yu Z, Sengco M, Anderson D (2004) Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J Appl Phycol 16(2):101–110CrossRefGoogle Scholar
  105. Zhang S, Song X, Wang Y et al (2005a) Competition on nutrients between Gracilaria lemaneiformis and Scrippsiella trochoidea (Stein) Loeblich. Oceanol Limnol Sin 36(6):556–561 (in Chinese)Google Scholar
  106. Zhang S, Yu Z, Song X et al (2005b) Competition about nutrients between Gracilaria lemaneiformis and Prorocentrum donghaiens. Acta Ecol Sin 25(10):2676–2680 (in Chinese)Google Scholar
  107. Zhang Z (2006) Analysis of emergency control effectiveness of blue-green alge in Xuanwu Lake. Pollut Control Technol 19(5):56–59 (in Chinese)Google Scholar
  108. Zheng X, Zhang B, Zhang J et al (2013) A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl Microbiol Biotechnol 97(20):9207–9215CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Zhiming Yu
    • 1
    • 2
    • 3
  • Xiuxian Song
    • 1
    • 2
    • 3
  • Xihua Cao
    • 1
    • 3
  • Yang Liu
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations