Advertisement

Recent Advances in Modelling of Harmful Algal Blooms

  • Peter J. S. Franks
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 232)

Abstract

Our understanding of the dynamics of HABs, in the context of both their ecosystems and their environment, has increased tremendously through the combination of models and data. The GEOHAB program, in particular, has promoted the integration of data and models for understanding and predicting HABs. The engagement of statisticians, physical oceanographers, and modelers with the biologists investigating HABs has been a powerful boon to progress in this field. New statistical techniques have been deployed to understand and predict HABs in response to measured forcings, and new dynamic models of HABs and their ecosystems are enabling a deeper understanding of the processes governing the initiation, growth, transport, and decline of phytoplankton species and their toxins. The maturing of process models, combined with improved, data-based empirical-statistical models, has led to significant improvements in models for predicting and managing HABs.

Notes

Acknowledgments

There are far more published model studies than I am able to review here. I apologize to those whose work I have not included—there just wasn’t enough room!

References

  1. Accoroni S, Glibert PM, Pichierri S et al (2015) A conceptual model of annual Ostreopsis cf. ovata blooms in the northern Adriatic Sea based on the synergic effects of hydrodynamics, temperature, and the N:P ratio of water column nutrients. Harmful Algae 45:14–25.  https://doi.org/10.1016/j.hal.2015.04.002CrossRefGoogle Scholar
  2. Alves-de-Souza C, Pecqueur D, Le Floc’h E et al (2015) Significance of plankton community structure and nutrient availability for the control of dinoflagellate blooms by parasites: a modeling approach. PLoS One 10(6):e0127623.  https://doi.org/10.1371/journal.pone.0127623CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aoki K, Onitsuka G, Shimizu M et al (2012) Factors controlling the spatio-temporal distribution of the 2009 Chattonella antiqua bloom in the Yatsushiro Sea, Japan. Estuar Coast Shelf Sci 114:148–155.  https://doi.org/10.1016/j.ecss.2012.08.028CrossRefGoogle Scholar
  4. Berdalet E, Tester PA (2018) Key questions and recent research advances on harmful algal blooms in benthic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 261–286CrossRefGoogle Scholar
  5. Brown CW, Hood RR, Long W et al (2013) Ecological forecasting in Chesapeake Bay: using a mechanistic-empirical modeling approach. J Mar Syst 125:113–125.  https://doi.org/10.1016/j.jmarsys.2012.12.007CrossRefGoogle Scholar
  6. Butman B, Aretxabaleta AL, Dickhudt PJ et al (2014) Investigating the importance of sediment resuspension in Alexandrium fundyense cyst population dynamics in the Gulf of Maine. Deep Sea Res Part II Top Stud Oceanogr 2(103):79–95.  https://doi.org/10.1016/j.dsr2.2013.10.011CrossRefGoogle Scholar
  7. Cha Y, Park SS, Kim K et al (2014) Probabilistic prediction of cyanobacteria abundance in a Korean reservoir using a Bayesian Poisson model. Water Resour Res 50(3):2518–2532.  https://doi.org/10.1002/2013WR014372CrossRefGoogle Scholar
  8. Cusack C, Dabrowski T, Lyons K et al (2016) Harmful algal bloom forecast system for SW Ireland. Part II: are operational oceanographic models useful in a HAB warning system? Harmful Algae 53:86–101.  https://doi.org/10.1016/j.hal.2015.11.013CrossRefPubMedGoogle Scholar
  9. Cusack C, Mouriño H, Moita MT et al (2015) Modelling Pseudo-nitzschia events off southwest Ireland. J Sea Res 105:30–41.  https://doi.org/10.1016/j.seares.2015.06.012CrossRefGoogle Scholar
  10. Dabrowski T, Lyons K, Nolan G et al (2016) Harmful algal bloom forecast system for SW Ireland. Part I: description and validation of an operational forecasting model. Harmful Algae 53:64–76.  https://doi.org/10.1016/j.hal.2015.11.015CrossRefPubMedGoogle Scholar
  11. Davidson K, Anderson DM, Mateus M et al (2016) Forecasting the risk of harmful algal blooms. Harmful Algae 53:1–7.  https://doi.org/10.1016/j.hal.2015.11.005CrossRefPubMedGoogle Scholar
  12. Díaz PA, Ruiz-Villarreal M, Pazos Y et al (2016) Climate variability and Dinophysis acuta blooms in an upwelling system. Harmful Algae 53:145–159.  https://doi.org/10.1016/j.hal.2015.11.007CrossRefPubMedPubMedCentralGoogle Scholar
  13. Feki W, Hamza A, Frossard V et al (2013) What are the potential drivers of blooms of the toxic dinoflagellate Karenia selliformis? A 10-year study in the Gulf of Gabes, Tunisia, southwestern Mediterranean Sea. Harmful Algae 23:8–18.  https://doi.org/10.1016/j.hal.2012.12.001CrossRefGoogle Scholar
  14. Flynn KJ, St John M, Raven JA et al (2015) Acclimation, adaptation, traits and trade-offs in plankton functional models: reconciling terminology for biology and modeling. J Plankton Res 37:683–691CrossRefGoogle Scholar
  15. Franks PJS (1997) Models of harmful algal blooms. Limnol Oceanogr 42:1273–1282CrossRefGoogle Scholar
  16. Franks PJS (2014) Modeling of harmful algal blooms: advances in the last decade. In: Rossini GP (ed) Toxins and biologically active compound from microalgae, Biological effects and risk management, vol 2. CRC Press, Boca Raton, FL, pp 538–565CrossRefGoogle Scholar
  17. GEOHAB (2001) Global ecology and oceanography of harmful algal blooms. Glibert P, Pitcher G (eds) Science plan. SCOR, IOC, Baltimore, Paris. 86 ppGoogle Scholar
  18. GEOHAB (2011) GEOHAB modelling: linking observations to predictions, a workshop report. McGillicuddy DJ Jr, Glibert PM, Berdalet E et al (eds). IOC, SCOR, Paris, Newark, Delaware, 85 ppGoogle Scholar
  19. Giddings SN, MacCready P, Hickey BM et al (2014) Hindcasts of potential harmful algal bloom transport pathways on the Pacific Northwest coast. J Geophys Res Oceans 119(4):2439–2461.  https://doi.org/10.1002/2013JC009622CrossRefGoogle Scholar
  20. Gillibrand PA, Siemering B, Miller PI et al (2016) Individual-based modelling of the development and transport of a Karenia mikimotoi bloom on the North-west European continental shelf. Harmful Algae 53:118–134.  https://doi.org/10.1016/j.hal.2015.11.011CrossRefPubMedGoogle Scholar
  21. Glibert PM (2016) Margalef revisited: a new phytoplankton mandala incorporating twelve dimensions, including nutritional physiology. Harmful Algae 55:25–30.  https://doi.org/10.1016/j.hal.2016.01.008CrossRefPubMedPubMedCentralGoogle Scholar
  22. Glibert PM, Allen JI, Artioli Y et al (2014) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Change Biol 20(12):3845–3858.  https://doi.org/10.1111/gcb.12662CrossRefGoogle Scholar
  23. Gobler CJ, Sunda WG (2012) Ecosystem disruptive algal blooms of the brown tide species, Aureococcus anophagefferens and Aureoumbra lagunensis. Harmful Algae 14:36–45.  https://doi.org/10.1016/j.hal.2011.10.013CrossRefGoogle Scholar
  24. Gokaraju B, Durbha SS, King RL et al (2012) Ensemble methodology using multistage learning for improved detection of harmful algal blooms. IEEE Geosci Remote Sens Lett 9(5):827–831. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6153049CrossRefGoogle Scholar
  25. González Vilas L, Spyrakos E, Palenzuela T et al (2014) Support vector machine-based method for predicting Pseudo-nitzschia spp. blooms in coastal waters (Galician rías, NW Spain). Prog Oceanogr 124:66–77.  https://doi.org/10.1016/j.pocean.2014.03.003CrossRefGoogle Scholar
  26. Harvey EL, Menden-Deuer S (2012) Predator-induced fleeing behaviors in phytoplankton: a new mechanism for harmful algal bloom formation? PLoS One 7(9):e46438.  https://doi.org/10.1371/journal.pone.0046438CrossRefPubMedPubMedCentralGoogle Scholar
  27. Henrichs DW, Hetland RD, Campbell L (2015) Identifying bloom origins of the toxic dinoflagellate Karenia brevis in the western Gulf of Mexico using a spatially explicit individual-based model. Ecol Model 313:251–258.  https://doi.org/10.1016/j.ecolmodel.2015.06.038CrossRefGoogle Scholar
  28. Hickey BM, Trainer VL, Kosro M et al (2013) A springtime source of toxic Pseudo-nitzschia cells on razor clam beaches in the pacific northwest. Harmful Algae 25:1–14.  https://doi.org/10.1016/j.hal.2013.01.006CrossRefGoogle Scholar
  29. Hu C, Murch B, Corcoran AA et al (2016) Developing a smart semantic web with linked data and models for near-real-time monitoring of red tides in the eastern Gulf of Mexico. IEEE Syst J 10(3):1282–1290.  https://doi.org/10.1109/JSYST.2015.2440782CrossRefGoogle Scholar
  30. Jeong HJ, Lim AS, Franks PJS et al (2015) A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97–115.  https://doi.org/10.1016/j.hal.2015.06.004CrossRefGoogle Scholar
  31. Kibler SR, Tester PA, Kunkel KE et al (2015) Effects of ocean warming on growth and distribution of dinoflagellates associated with ciguatera fish poisoning in the Caribbean. Ecol Model 316:194–210.  https://doi.org/10.1016/j.ecolmodel.2015.08.020CrossRefGoogle Scholar
  32. Lai Z, Yin K (2014) Physical-biological coupling induced aggregation mechanism for the formation of high biomass red tides in low nutrient waters. Harmful Algae 31:66–75.  https://doi.org/10.1016/j.hal.2013.09.011CrossRefPubMedGoogle Scholar
  33. Li Y, He R, Manning JP (2014) Coastal connectivity in the Gulf of Maine in spring and summer of 2004-2009. Deep Sea Res Part II Top Stud Oceanogr 103:199–209.  https://doi.org/10.1016/j.dsr2.2013.01.037CrossRefGoogle Scholar
  34. Lim AS, Jeong HJ, Jang TY et al (2014) Inhibition of growth rate and swimming speed of the harmful dinoflagellate Cochlodinium polykrikoides by diatoms: Implications for red tide formation. Harmful Algae 37:53–63.  https://doi.org/10.1016/j.hal.2014.05.003CrossRefGoogle Scholar
  35. Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484CrossRefGoogle Scholar
  36. Maguire J, Cusack C, Ruiz-Villarreal M et al (2016) Applied simulations and integrated modelling for the understanding of toxic and harmful algal blooms (ASIMUTH): integrated HAB forecast systems for Europe’s Atlantic arc. Harmful Algae 53:160–166.  https://doi.org/10.1016/j.hal.2015.11.006CrossRefPubMedGoogle Scholar
  37. Margalef R (1978) Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509Google Scholar
  38. Margalef R, Estrada M, Blasco D (1979) Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In: Taylor DL, Seliger HH (eds) Toxic dinoflagellate blooms. Elsevier, North Holland, pp 89–94Google Scholar
  39. Millie DF, Weckman GR, Fahnenstiel GL et al (2014) Using artificial intelligence for CyanoHAB niche modeling: discovery and visualization of Microcystis – environmental associations within western Lake Erie. Can J Fish Aquat Sci 71(11):1642–1654.  https://doi.org/10.1139/cjfas-2013-0654CrossRefGoogle Scholar
  40. Moe SJ, Haande S, Couture RM (2016) Climate change, cyanobacteria blooms and ecological status of lakes: a Bayesian network approach. Ecol Model 337:330–347.  https://doi.org/10.1016/j.ecolmodel.2016.07.004CrossRefGoogle Scholar
  41. Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11.  https://doi.org/10.1016/j.hal.2015.06.008CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nieto PJG, Fernández JRA, Suárez VMG et al (2015) A hybrid PSO optimized SVM-based method for predicting of the cyanotoxin content from experimental cyanobacteria concentrations in the Trasona reservoir: a case study in Northern Spain. Appl Math Comput 260:170–187.  https://doi.org/10.1016/j.amc.2015.03.075CrossRefGoogle Scholar
  43. Obenour D, Gronewold A, Stow CA et al (2014) Using a Bayesian hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water Resour Res 50:7847–7860.  https://doi.org/10.1002/2014WR015616CrossRefGoogle Scholar
  44. Pinto L, Mateus M, Silva A (2016) Modeling the transport pathways of harmful algal blooms in the Iberian coast. Harmful Algae 53:8–16.  https://doi.org/10.1016/j.hal.2015.12.001CrossRefPubMedPubMedCentralGoogle Scholar
  45. Rigosi A, Hanson P, Hamilton DP et al (2015) Determining the probability of cyanobacterial blooms: the application of Bayesian networks in multiple lake systems. Ecol Appl 25(1):186–199.  https://doi.org/10.1890/13-1677.1CrossRefPubMedGoogle Scholar
  46. Riley GA (1941) Plankton studies. IV. Georges Bank. Bull Bingham Oceanogr Coll 7:1–73Google Scholar
  47. Ruiz-Villarreal M, García-García LM, Cobas M et al (2016) Modelling the hydrodynamic conditions associated with Dinophysis blooms in Galicia (NW Spain). Harmful Algae 53:40–52.  https://doi.org/10.1016/j.hal.2015.12.003CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ryan JP, McManus MA, Kudela RM et al (2014) Boundary influences on HAB phytoplankton ecology in a stratification-enhanced upwelling shadow. Deep Sea Res Part II Top Stud Oceanogr 101:63–79.  https://doi.org/10.1016/j.dsr2.2013.01.017CrossRefGoogle Scholar
  49. Silva A, Pinto L, Rodrigues SM et al (2016) A HAB warning system for shellfish harvesting in Portugal. Harmful Algae 53:33–39.  https://doi.org/10.1016/j.hal.2015.11.017CrossRefPubMedPubMedCentralGoogle Scholar
  50. Singh A, Hårding K, Reddy HRV, Godhe A (2014) An assessment of Dinophysis blooms in the coastal Arabian sea. Harmful Algae 34:29–35.  https://doi.org/10.1016/j.hal.2014.02.006CrossRefGoogle Scholar
  51. Sunda WG, Shertzer KW (2014) Positive feedbacks between bottom-up and top-down controls promote the formation and toxicity of ecosystem disruptive algal blooms: a modeling study. Harmful Algae 39:342–356.  https://doi.org/10.1016/j.hal.2014.09.005CrossRefGoogle Scholar
  52. Terseleer N, Gypens N, Lancelot C (2013) Factors controlling the production of domoic acid by Pseudo-nitzschia (Bacillariophyceae): a model study. Harmful Algae 24:45–53.  https://doi.org/10.1016/j.hal.2013.01.004CrossRefGoogle Scholar
  53. Tobin ED, Grünbaum D, Patterson J et al (2013) Behavioral and physiological changes during benthic-pelagic transition in the harmful alga, Heterosigma akashiwo: potential for rapid bloom formation. PLoS One 8(10):e76663.  https://doi.org/10.1371/journal.pone.0076663CrossRefPubMedPubMedCentralGoogle Scholar
  54. Visser PM, Verspagen JMH, Sandrini G et al (2016) How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae 54:145–159.  https://doi.org/10.1016/j.hal.2015.12.006CrossRefPubMedPubMedCentralGoogle Scholar
  55. Walsh JJ, Lenes JM, Darrow B et al (2016) Impacts of combined overfishing and oil spills on the plankton trophodynamics of the West Florida shelf over the last half century of 1965-2011: a two-dimensional simulation analysis of biotic state transitions, from a zooplankton- to a bacterioplankton-modulated ecosystem. Cont Shelf Res 116:54–73.  https://doi.org/10.1016/j.csr.2016.01.007CrossRefGoogle Scholar
  56. Warns A, Hense I, Kremp A (2013) Modelling the life cycle of dinoflagellates: a case study with Biecheleria baltica. J Plankton Res 35(2):379–392.  https://doi.org/10.1093/plankt/fbs095CrossRefGoogle Scholar
  57. Waters LG, Wolcott TG, Kamykowski D et al (2015) Deep-water seed populations for red tide blooms in the Gulf of Mexico. Mar Ecol Prog Ser 529:1–16.  https://doi.org/10.3354/meps11272CrossRefGoogle Scholar
  58. Wyatt T (2014) Margalef’s mandala and phytoplankton bloom strategies. Deep Sea Res Part II Top Stud Oceanogr 101:32–49.  https://doi.org/10.1016/j.dsr2.2012.12.006CrossRefGoogle Scholar
  59. Yamaguchi H, Sai K (2015) Simulating the vertical dynamics of phosphate and their effects on the growth of harmful algae. Estuar Coast Shelf Sci 164:425–432.  https://doi.org/10.1016/j.ecss.2015.07.043CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Scripps Institution of OceanographyUniversity of California, San DiegoLa JollaUSA

Personalised recommendations